Project

General

Profile

325 markw
---------------------------------------------------------------------------
-- (c) 2013,2015 mark watson
-- I am happy for anyone to use this for non-commercial use.
-- If my vhdl files are used commercially or otherwise sold,
-- please contact me for explicit permission at scrameta (gmail).
-- This applies for source and binary form and derived works.
---------------------------------------------------------------------------
LIBRARY ieee;
USE ieee.std_logic_1164.all;

ENTITY sram IS
PORT
(
328 markw
ADDRESS : IN STD_LOGIC_VECTOR(20 DOWNTO 0);
330 markw
DIN : IN STD_LOGIC_vector(31 downto 0);
325 markw
WREN : IN STD_LOGIC;

clk : in std_logic;
reset_n : in std_logic;

request : in std_logic;
330 markw
width32bit : in std_logic; -- 32-bit read/write
325 markw
-- SRAM interface
328 markw
SRAM_ADDR: OUT STD_LOGIC_VECTOR(20 downto 0);
325 markw
SRAM_CE_N: OUT STD_LOGIC;
SRAM_OE_N: OUT STD_LOGIC;
SRAM_WE_N: OUT STD_LOGIC;

SRAM_DQ: INOUT STD_LOGIC_VECTOR(7 downto 0);

-- Provide data to system
330 markw
DOUT : OUT STD_LOGIC_VECTOR(31 downto 0);
325 markw
complete : out std_logic
);

END sram;

-- first cycle, capture inputs
-- second cycle, sram access
ARCHITECTURE slow OF sram IS
signal oe_n_next : std_logic;
signal oe_n_reg : std_logic;

signal we_n_next : std_logic;
signal we_n_reg : std_logic;
330 markw
signal address_next : std_logic_vector(20 downto 0);
signal address_reg : std_logic_vector(20 downto 0);
325 markw
330 markw
signal data_write_next : std_logic_vector(31 downto 0);
signal data_write_reg : std_logic_vector(31 downto 0);

signal data_read_next : std_logic_vector(31 downto 0);
signal data_read_reg : std_logic_vector(31 downto 0);
325 markw
330 markw
signal complete_next : std_logic;
signal complete_reg : std_logic;

constant state_idle : std_logic_vector(3 downto 0) := "0000";
constant state_read_byte1 : std_logic_vector(3 downto 0) := "0001";
constant state_read_byte2 : std_logic_vector(3 downto 0) := "0010";
constant state_read_byte3 : std_logic_vector(3 downto 0) := "0011";
constant state_read_byte4 : std_logic_vector(3 downto 0) := "0100";
constant state_write_byte1a : std_logic_vector(3 downto 0) := "0101";
constant state_write_byte1b : std_logic_vector(3 downto 0) := "0110";
constant state_write_byte2a : std_logic_vector(3 downto 0) := "0111";
constant state_write_byte2b : std_logic_vector(3 downto 0) := "1000";
constant state_write_byte3a : std_logic_vector(3 downto 0) := "1001";
constant state_write_byte3b : std_logic_vector(3 downto 0) := "1010";
constant state_write_byte4a : std_logic_vector(3 downto 0) := "1011";
constant state_read_byte4b : std_logic_vector(3 downto 0) := "1101";
signal state_next : std_logic_vector(3 downto 0);
signal state_reg : std_logic_vector(3 downto 0);
325 markw
BEGIN
-- registers
process(clk,reset_n)
begin
if (reset_n = '0') then
oe_n_reg <= '1';
we_n_reg <= '1';
330 markw
data_write_reg <= (others=>'0');
data_read_reg <= (others=>'0');
complete_reg <= '0';
state_reg <= state_idle;
address_reg <= (others=>'0');
325 markw
elsif (clk'event and clk='1') then
oe_n_reg <= oe_n_next;
we_n_reg <= we_n_next;
330 markw
data_write_reg <= data_write_next;
data_read_reg <= data_read_next;
complete_reg <= complete_next;
state_reg <= state_next;
address_reg <= address_next;
325 markw
end if;
end process;

-- next state
330 markw
process(din,wren,request,state_reg,width32bit,sram_dq,data_read_reg,data_write_reg,address_reg,address)
325 markw
begin
330 markw
state_next <= state_reg;
data_write_next <= data_write_reg;
data_read_next <= data_read_reg;
complete_next <= '0';
325 markw
oe_n_next <= '0';
we_n_next <= '1';
330 markw
address_next <= address_reg;
325 markw
-- on second cycle do write - address/data stable by now guaranteed (normal timequest...)
330 markw
case state_reg is
when state_idle =>
if (request = '1') then
data_write_next <= din;
address_next <= address;
if (width32bit = '1') then
if (wren = '1') then
address_next(1 downto 0) <= "00";
state_next <= state_write_byte1a;
else
address_next(1 downto 0) <= "11";
state_next <= state_read_byte1;
end if;
else
if (wren = '1') then
state_next <= state_write_byte4a;
else
state_next <= state_read_byte4;
end if;
end if;
end if;

when state_read_byte1 =>
address_next(1 downto 0) <= "10";
data_read_next(31 downto 24) <= SRAM_DQ;
state_next <= state_read_byte2;
when state_read_byte2 =>
address_next(1 downto 0) <= "01";
data_read_next(23 downto 16) <= SRAM_DQ;
state_next <= state_read_byte3;
when state_read_byte3 =>
address_next(1 downto 0) <= "00";
data_read_next(15 downto 8) <= SRAM_DQ;
state_next <= state_read_byte4;
when state_read_byte4 =>
data_read_next(7 downto 0) <= SRAM_DQ;
state_next <= state_idle;
complete_next <= '1';

when state_write_byte1a =>
state_next <= state_write_byte1b;
we_n_next <= '0';
oe_n_next <= '1';
when state_write_byte1b =>
address_next(1 downto 0) <= "01";
data_write_next(23 downto 0) <= data_write_reg(31 downto 8);
state_next <= state_write_byte2a;
we_n_next <= '1';
oe_n_next <= '1';
when state_write_byte2a =>
state_next <= state_write_byte2b;
we_n_next <= '0';
oe_n_next <= '1';
when state_write_byte2b =>
address_next(1 downto 0) <= "10";
data_write_next(23 downto 0) <= data_write_reg(31 downto 8);
state_next <= state_write_byte3a;
we_n_next <= '1';
oe_n_next <= '1';
when state_write_byte3a =>
state_next <= state_write_byte3b;
we_n_next <= '0';
oe_n_next <= '1';
when state_write_byte3b =>
address_next(1 downto 0) <= "11";
data_write_next(23 downto 0) <= data_write_reg(31 downto 8);
state_next <= state_write_byte4a;
we_n_next <= '1';
oe_n_next <= '1';
when state_write_byte4a =>
we_n_next <= '0';
oe_n_next <= '1';
complete_next <= '1';
state_next <= state_idle;
when others =>
state_next <= state_idle;
end case;
325 markw
end process;

-- output
SRAM_CE_N <= '0';
SRAM_OE_N <= oe_n_reg;
SRAM_WE_N <= we_n_reg;
330 markw
SRAM_DQ <= data_write_reg(7 downto 0) when we_n_reg = '0' else (others=>'Z');
SRAM_ADDR <= address_reg;
325 markw
330 markw
DOUT <= data_read_next;
325 markw
330 markw
complete <= complete_reg;
325 markw
--GPIO <= (others=>'0');
END slow;