Project

General

Profile

LIBRARY ieee;
USE ieee.std_logic_1164.all;
USE ieee.numeric_std.all;
use IEEE.STD_LOGIC_MISC.all;

ENTITY timing_antic IS
PORT (
CLK: in std_logic;
RESET_N: in std_logic;
-- input from the cart port
PHI2 : in std_logic; -- async to our clk (ish):-(
bus_addr : in std_logic_vector(15 downto 0);
bus_data : in std_logic_vector(7 downto 0);
bus_rw_n : in std_logic;

bus_lp_n : in std_logic;
bus_rnmi_n : in std_logic;
-- output to the cart port
bus_data_out : out std_logic_vector(7 downto 0);
bus_data_oe : out std_logic;
bus_addr_out : out std_logic_vector(15 downto 0);
bus_addr_oe : out std_logic;
bus_rdy : out std_logic;
bus_ref_n : out std_logic;
bus_ref_n_oe : out std_logic;
bus_halt_n : out std_logic;
bus_halt_n_oe : out std_logic;
bus_an_out : out std_logic_vector(2 downto 0);

-- request for a memory bus cycle (read or write)
BUS_REQUEST: out std_logic;
ADDR_IN: out std_logic_vector(15 downto 0);
DATA_IN: out std_logic_vector(7 downto 0);
RW_N: out std_logic;
LIGHTPEN : out std_logic;

ENABLE_CYCLE : out std_logic;

DATA_OUT: in std_logic_vector(7 downto 0); -- read_data

-- antic bus master
ADDR_OUT : in std_logic_vector(15 downto 0);
CYCLE_TYPE : in std_logic_vector(2 downto 0); --000=cpu,001=dma,010=refresh,011=undef,100=undef,101=dma_wsync,110=refresh_wsync,101=undef
DMA_COMPLETE: out std_logic;
-- antic an0 output
AN_OUT : in std_logic_vector(2 downto 0);
AN_OUT_ENABLE : in std_logic;
FO0 : in std_logic
);
END timing_antic;

ARCHITECTURE vhdl OF timing_antic IS

signal PHI2_sync : std_logic;
signal phi_edge_prev_next : std_logic;
signal phi_edge_prev_reg: std_logic;

signal FO0_sync : std_logic;
signal fo0_edge_prev_next : std_logic;
signal fo0_edge_prev_reg: std_logic;

signal delay_next : std_logic_vector(31 downto 0);
signal delay_reg : std_logic_vector(31 downto 0);
signal bus_data_out_next : std_logic_vector(7 downto 0);
signal bus_data_out_reg : std_logic_vector(7 downto 0);
signal bus_data_oe_next : std_logic;
signal bus_data_oe_reg : std_logic;

signal bus_addr_out_next : std_logic_vector(15 downto 0);
signal bus_addr_out_reg : std_logic_vector(15 downto 0);
signal bus_addr_oe_next : std_logic;
signal bus_addr_oe_reg : std_logic;

signal bus_data_in_next : std_logic_vector(7 downto 0);
signal bus_data_in_reg : std_logic_vector(7 downto 0);
signal bus_addr_in_next : std_logic_vector(15 downto 0);
signal bus_addr_in_reg : std_logic_vector(15 downto 0);
signal bus_rw_n_next : std_logic;
signal bus_rw_n_reg : std_logic;

signal bus_rdy_next : std_logic;
signal bus_rdy_reg : std_logic;
signal bus_ref_n_next : std_logic;
signal bus_ref_n_reg : std_logic;
signal bus_ref_n_oe_next : std_logic;
signal bus_ref_n_oe_reg : std_logic;
signal bus_halt_n_next : std_logic;
signal bus_halt_n_reg : std_logic;
signal bus_halt_n_oe_next : std_logic;
signal bus_halt_n_oe_reg : std_logic;

signal bus_an_next : std_logic_vector(2 downto 0);
signal bus_an_reg : std_logic_vector(2 downto 0);
signal an_cap_next : std_logic_vector(2 downto 0);
signal an_cap_reg : std_logic_vector(2 downto 0);

signal cycle_type_next : std_logic_vector(2 downto 0);
signal cycle_type_reg : std_logic_vector(2 downto 0);

signal refresh_count_next : std_logic_vector(7 downto 0);
signal refresh_count_reg : std_logic_vector(7 downto 0);

signal state_reg : std_logic_vector(2 downto 0);
signal state_next : std_logic_vector(2 downto 0);
constant state_wait_addrctl : std_logic_vector(2 downto 0) := "001";
constant state_write_request : std_logic_vector(2 downto 0) := "010";
constant state_read_output_start : std_logic_vector(2 downto 0) := "011";
constant state_read_output_end : std_logic_vector(2 downto 0) := "100";
constant state_read_output_fetch : std_logic_vector(2 downto 0) := "101";
constant state_wait_dma : std_logic_vector(2 downto 0) := "110";
constant state_select : std_logic_vector(2 downto 0) := "111";

signal internal_dma_complete : std_logic;
signal internal_memory_request : std_logic;
signal registered_read_data_next : std_logic_vector(7 downto 0);
signal registered_read_data_reg : std_logic_vector(7 downto 0);
begin
-- Fast half, for accurate sampling of the 6502 bus - which is quirky on Atari - e.g. phi2 is often not in time with the data lines on writes!!

process(clk,reset_n)
begin
if (reset_n='0') then
phi_edge_prev_reg <= '1';
fo0_edge_prev_reg <= '1';
delay_reg <= (others=>'0');
bus_data_out_reg <= (others=>'0');
bus_data_oe_reg <= '0';
bus_addr_out_reg <= (others=>'0');
bus_addr_oe_reg <= '0';

bus_rw_n_reg <= '1';
bus_data_in_reg <= (others=>'0');
bus_addr_in_reg <= (others=>'0');

bus_rdy_reg <= '1';
bus_ref_n_reg <= '1';
bus_ref_n_oe_reg <= '1';
bus_halt_n_reg <= '1';
bus_halt_n_oe_reg <= '1';

bus_an_reg <= (others=>'0');
an_cap_reg <= (others=>'0');

registered_read_data_reg <= (others=>'0');

cycle_type_reg <= (others=>'0');
refresh_count_reg <= (others=>'0');

state_reg <= state_select;
elsif (clk'event and clk='1') then
phi_edge_prev_reg <= phi_edge_prev_next;
fo0_edge_prev_reg <= fo0_edge_prev_next;
delay_reg <= delay_next;
bus_data_out_reg <= bus_data_out_next;
bus_data_oe_reg <= bus_data_oe_next;
bus_addr_out_reg <= bus_addr_out_next;
bus_addr_oe_reg <= bus_addr_oe_next;

bus_rw_n_reg <= bus_rw_n_next;
bus_data_in_reg <= bus_data_in_next;
bus_addr_in_reg <= bus_addr_in_next;

bus_rdy_reg <= bus_rdy_next;
bus_ref_n_reg <= bus_ref_n_next;
bus_ref_n_oe_reg <= bus_ref_n_oe_next;
bus_halt_n_reg <= bus_halt_n_next;
bus_halt_n_oe_reg <= bus_halt_n_oe_next;

bus_an_reg <= bus_an_next;
an_cap_reg <= an_cap_next;

registered_read_data_reg <= registered_read_data_next;

cycle_type_reg <= cycle_type_next;
refresh_count_reg <= refresh_count_next;

state_reg <= state_next;
end if;
end process;
synchronizer_phi : entity work.synchronizer
port map (clk=>clk, raw=>PHI2, sync=>PHI2_SYNC);

phi_edge_prev_next <= phi2_sync;


synchronizer_fo0 : entity work.synchronizer
port map (clk=>clk, raw=>FO0, sync=>FO0_SYNC);

fo0_edge_prev_next <= fO0_sync;

process(registered_read_data_reg, data_out,phi2_sync, phi_edge_prev_reg, delay_reg,
bus_data_oe_reg,bus_data_out_reg,
bus_rw_n_reg,bus_addr_in_reg,bus_data_in_reg,
bus_rw_n,
bus_data,bus_addr,
cycle_type_reg,cycle_type,
bus_halt_n_reg,bus_ref_n_reg,
bus_rdy_reg,bus_addr_out_reg,bus_addr_oe_reg,
refresh_count_reg,
state_reg,
addr_out)
begin
-- maintain snap (only read bus when safe!)
bus_addr_in_next <= bus_addr_in_reg;
bus_data_in_next <= bus_data_in_reg;
bus_rw_n_next <= bus_rw_n_reg;

internal_memory_request <= '0';
internal_dma_complete <= '0';
delay_next <= delay_reg(30 downto 0)&(not(phi2_sync) and phi_edge_prev_reg);
bus_data_out_next <= bus_data_out_reg;
bus_data_oe_next <= bus_data_oe_reg;

cycle_type_next <= cycle_type_reg;

registered_read_data_next <= registered_read_data_reg;

bus_halt_n_next <= bus_halt_n_reg;
bus_halt_n_oe_next <= not(bus_halt_n_reg); --drive low only
bus_ref_n_next <= bus_ref_n_reg;
bus_ref_n_oe_next <= not(bus_ref_n_reg); --drive low only
bus_rdy_next <= bus_rdy_reg;
bus_addr_out_next <= bus_addr_out_reg;
bus_addr_oe_next <= bus_addr_oe_reg;

refresh_count_next <= refresh_count_reg;

if (delay_reg(20)='1') then
cycle_type_next <= cycle_type;
end if;

if (delay_reg(22)='1' or delay_reg(18)='1') then
--next_cycle_type : out STD_LOGIC_VECTOR(2 downto 0); --000=cpu,001=dma,010=refresh,011=undef,100=undef,101=dma_wsync,110=refresh_wsync,101=undef
bus_halt_n_next <= not(cycle_type_reg(0) or cycle_type_reg(1));

--bus_halt_n_oe_next <= '1'; -- turbo freeer interaction?? Can we get by with just the internal pull-up? For now drive for single cycle (less likely to kill anything...)
end if;

if (delay_reg(2)='1') then
bus_ref_n_next <= not(cycle_type_reg(1));

--bus_ref_n_oe_next <= '1'; -- turbo freeer interaction?? Can we get by with just the internal pull-up? For now drive for single cycle (less likely to kill anything...)
end if;

if (delay_reg(2)='1') then --when?
bus_rdy_next <= not(cycle_type_reg(2));
end if;

-- LLLLLLLHHHHHHH
-- XXAAAAAAAAAAAA
-- XXXXXXXXXXDDDD
state_next <= state_reg;
case (state_reg) is
when state_select =>
if (delay_reg(2)='1') then
if (cycle_type_reg(1)='1') then -- refresh
state_next <= state_wait_dma;
bus_addr_out_next <= x"ff"&refresh_count_reg;
refresh_count_next <= std_logic_vector(unsigned(refresh_count_reg) +1);
elsif (cycle_type_reg(0)='1') then --halt
state_next <= state_wait_dma;
bus_addr_out_next <= ADDR_OUT;
else -- normal
state_next <= state_wait_addrctl;
end if;
end if;
when state_wait_dma =>
bus_addr_oe_next <= '1';
if (delay_reg(26)='1') then
bus_data_in_next <= bus_data;
end if;
if (delay_reg(27)='1') then
internal_dma_complete <= '1';
state_next <= state_select;
end if;
when state_wait_addrctl =>
if (delay_reg(11)='1' and bus_addr(15 downto 8)=x"D4") then
-- snap control signals, should be stable by now
bus_addr_in_next <= bus_addr;
bus_rw_n_next <= bus_rw_n;

if (bus_rw_n='1') then -- read
state_next <= state_read_output_fetch;
else
state_next <= state_write_request;
end if;
end if;
when state_write_request =>
if (delay_reg(26)='1') then
bus_data_in_next <= bus_data;
end if;
if (delay_reg(27)='1') then
internal_memory_request <= '1';
state_next <= state_select;
end if;
when state_read_output_fetch =>
state_next <= state_read_output_start;
internal_memory_request <= '1';
registered_read_data_next <= data_out;
when state_read_output_start =>
if (delay_reg(20)='1') then
bus_data_out_next <= registered_read_data_reg;
bus_data_oe_next <= '1';
state_next <= state_read_output_end;
end if;
when state_read_output_end =>
if (delay_reg(31)='1') then
bus_data_oe_next <= '0';
state_next <= state_select;
end if;
when others =>
state_next <= state_select;
end case;
end process;

process(an_out,an_out_enable,an_cap_reg)
begin
an_cap_next <= an_cap_reg;

if (an_out_enable='1') then
an_cap_next <= an_out;
end if;
end process;

process(fo0_edge_prev_reg,fo0_sync,an_cap_reg,bus_an_reg)
begin
bus_an_next <= bus_an_reg;
if (fo0_sync='1' and fo0_edge_prev_reg='0') then
bus_an_next <= an_cap_reg;
end if;
end process;

-- at some point, we need to ask antic what next cycle is:
-- i) normal, cpu controlled
-- ii) antic dma
-- iii) antic refresh
-- Then depending on the type, switch state machine to a different mode...
-- typically we find this out on the 'enable cycle' at the end of the 6502 cycle, but this is TOO late for asserting HALT.
-- in sallymax its on cycle 28,
-- i'm clockin in writes to antic on cycle 27 and doing next cycle on 29 currently.
-- ideally I'd know prior to the write...

bus_addr_out <= bus_addr_out_reg;
bus_addr_oe <= bus_addr_oe_reg;
bus_data_out <= bus_data_out_reg;
bus_data_oe <= bus_data_oe_reg;
bus_request <= internal_memory_request;
dma_complete <= internal_dma_complete;
addr_in <= bus_addr_in_reg;
data_in <= bus_data_in_reg;
rw_n <= bus_rw_n_reg;

bus_rdy <= bus_rdy_reg;
bus_ref_n <= bus_ref_n_reg;
bus_ref_n_oe <= bus_ref_n_oe_reg;
bus_halt_n <= bus_halt_n_reg;
bus_halt_n_oe <= bus_halt_n_oe_reg;
bus_an_out <= bus_an_reg;

enable_cycle <= delay_reg(29);
lightpen <= not(bus_lp_n); --TODO synchronize/sample...

end vhdl;
(23-23/24)