Project

General

Profile

//
// sd_card.v
//
// This file implelents a sd card for the MIST board since on the board
// the SD card is connected to the ARM IO controller and the FPGA has no
// direct connection to the SD card. This file provides a SD card like
// interface to the IO controller easing porting of cores that expect
// a direct interface to the SD card.
//
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the Lesser GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// http://elm-chan.org/docs/mmc/mmc_e.html

// TODO:
// - CMD9: SEND_CSD (requires device capacity)
// - CMD10: SEND_CID

module sd_card (
// link to user_io for io controller
output [31:0] io_lba,
output reg io_rd,
output reg io_wr,
input io_ack,
output io_conf,
output io_sdhc,
// data coming in from io controller
input [7:0] io_din,
input io_din_strobe,

// data going out to io controller
output [7:0] io_dout,
input io_dout_strobe,

// configuration input
input allow_sdhc,
input sd_cs,
input sd_sck,
input sd_sdi,
output reg sd_sdo
);

// set io_rd once read_state machine starts waiting (rising edge of req_io_rd)
// and clear it once io controller uploads something (io_ack==1)
// wire req_io_rd = (read_state == RD_STATE_WAIT_IO);
wire req_io_rd = (read_state != RD_STATE_IDLE);
always @(posedge req_io_rd or posedge io_ack) begin
if(io_ack) io_rd <= 1'b0;
else io_rd <= 1'b1;
end

wire req_io_wr = (write_state == WR_STATE_BUSY);
always @(posedge req_io_wr or posedge io_ack) begin
if(io_ack) io_wr <= 1'b0;
else io_wr <= 1'b1;
end

wire [31:0] OCR = { 1'b0, io_sdhc, 30'h0 }; // bit30 = 1 -> high capaciry card (sdhc)
wire [7:0] READ_DATA_TOKEN = 8'hfe;

localparam NCR=4;

// 0=idle, 1=wait for io ctrl, 2=wait for byte start, 3=send token, 4=send data, 5/6=send crc[0..1]
localparam RD_STATE_IDLE = 3'd0;
localparam RD_STATE_WAIT_IO = 3'd1;
localparam RD_STATE_SEND_TOKEN = 3'd2;
localparam RD_STATE_SEND_DATA = 3'd3;
localparam RD_STATE_SEND_CRC0 = 3'd4;
localparam RD_STATE_SEND_CRC1 = 3'd5;
reg [2:0] read_state = RD_STATE_IDLE;

// 0=idle
localparam WR_STATE_IDLE = 3'd0;
localparam WR_STATE_EXP_DTOKEN = 3'd1;
localparam WR_STATE_RECV_DATA = 3'd2;
localparam WR_STATE_RECV_CRC0 = 3'd3;
localparam WR_STATE_RECV_CRC1 = 3'd4;
localparam WR_STATE_SEND_DRESP = 3'd5;
localparam WR_STATE_BUSY = 3'd6;
reg [2:0] write_state = WR_STATE_IDLE;

reg [6:0] sbuf;
reg cmd55;
reg new_cmd_rcvd;
reg [7:0] cmd;
reg [2:0] bit_cnt; // counts bits 0-7 0-7 ...
reg [3:0] byte_cnt= 4'd15; // counts bytes

reg [31:0] lba;
assign io_lba = io_sdhc?lba:{9'd0, lba[31:9]};
//assign io_lba = io_sdhc?{read_state, lba[31:3]}:{9'd0, lba[31:9]};

// the command crc is actually never evaluated
reg [7:0] crc;

reg [7:0] reply;
reg [7:0] reply0, reply1, reply2, reply3;
reg [3:0] reply_len;

// signals to address buffer on SD card write (data coming from SD spi)
reg write_strobe;
reg [7:0] write_data;

// falling edge of io_ack signals that a sector to be read has been written into
// the sector bufffer by the io controller. This signal is kept set as long
// as the read state machine is in the "wait for io controller" state (state 1)
// wire rd_wait_io = (read_state == RD_STATE_WAIT_IO);
wire rd_wait_io = (read_state != RD_STATE_IDLE);
reg rd_io_ack = 1'b0 /* synthesis noprune */;
always @(negedge io_ack or negedge rd_wait_io) begin
if(!rd_wait_io) rd_io_ack <= 1'b0;
else rd_io_ack <= 1'b1;
end
wire wr_wait_io = (write_state == WR_STATE_BUSY);
reg wr_io_ack = 1'b0 /* synthesis noprune */;
always @(negedge io_ack or negedge wr_wait_io) begin
if(!wr_wait_io) wr_io_ack <= 1'b0;
else wr_io_ack <= 1'b1;
end

// ------------------------- SECTOR BUFFER -----------------------

// access to the sector buffer is multiplexed. When reading sectors
// the io controller writes into the buffer and the sd card implementation
// reads. And vice versa when writing sectors
wire reading = (read_state != RD_STATE_IDLE);
wire writing = (write_state != WR_STATE_IDLE);

// the buffer itself. Can hold one sector
reg [8:0] buffer_wptr;
reg [8:0] buffer_rptr;
reg [7:0] buffer [511:0];
reg [7:0] buffer_byte;

// ---------------- buffer read engine -----------------------
reg core_buffer_read_strobe;
wire buffer_read_latch = reading?sd_sck:io_dout_strobe;
wire buffer_read_strobe = reading?core_buffer_read_strobe:!io_dout_strobe;
assign io_dout = buffer_byte;

// sdo is sampled on negative sd clock so set it on positive edge
always @(posedge buffer_read_latch)
buffer_byte <= buffer[buffer_rptr];

always @(posedge buffer_read_strobe or posedge new_cmd_rcvd) begin
if(new_cmd_rcvd == 1) buffer_rptr <= 9'd0;
else buffer_rptr <= buffer_rptr + 9'd1;
end

// ---------------- buffer write engine -----------------------
wire [7:0] buffer_din = reading?io_din:write_data;
wire buffer_din_strobe = reading?io_din_strobe:write_strobe;

always @(negedge buffer_din_strobe or posedge new_cmd_rcvd) begin
if(new_cmd_rcvd == 1) begin
buffer_wptr <= 9'd0;
end else begin
buffer[buffer_wptr] <= buffer_din;
buffer_wptr <= buffer_wptr + 9'd1;
end
end

wire [7:0] WRITE_DATA_RESPONSE = 8'h05;

// ------------------------- CSD/CID BUFFER ----------------------
assign io_conf = (csd_wptr == 0); // csd_wptr still 0 -> configuration required

// the 32 bytes as sent from the io controller
reg [7:0] cid [15:0];
reg [7:0] csd [15:0];
reg [7:0] conf;

reg [7:0] cid_byte;
reg [7:0] csd_byte;
reg [5:0] csd_wptr = 6'd0;

// conf[0]==1 -> io controller is using an sdhc card
wire io_has_sdhc = conf[0];
assign io_sdhc = allow_sdhc && io_has_sdhc;

always @(negedge io_din_strobe) begin
// if io controller sends data without asserting io_ack, then it's
// updating the config
if(!io_ack && (csd_wptr <= 32)) begin
if(csd_wptr < 16) // first 16 bytes are cid
cid[csd_wptr] <= io_din;
if((csd_wptr >= 16) && (csd_wptr < 32)) // then comes csd
csd[csd_wptr-16] <= io_din;
if(csd_wptr == 32) // finally a config byte
conf <= io_din;
csd_wptr <= csd_wptr + 1;
end
end
always @(posedge buffer_read_latch)
cid_byte <= cid[buffer_rptr];

always @(posedge buffer_read_latch)
csd_byte <= csd[buffer_rptr];
// ----------------- spi transmitter --------------------
reg rd_io_ackD, wr_io_ackD;

reg illegal_state /* synthesis noprune */;

always@(negedge sd_sck) begin
if(sd_cs == 0) begin
illegal_state <= 1'b0;
core_buffer_read_strobe <= 1'b0;

// using rd_io_ack directly brings the read state machine into an
// non-existing state every now and then. For unknown reason
rd_io_ackD <= rd_io_ack;
// wait for end of command plus NCR before replying
if(byte_cnt < 5+NCR) begin
sd_sdo <= 1'b1; // reply $ff -> wait
end else if(byte_cnt == 5+NCR) begin
sd_sdo <= reply[~bit_cnt];

if(bit_cnt == 7) begin
// these three commands all have a reply_len of 0 and will thus
// not send more than a single reply byte
// CMD9: SEND_CSD
// CMD10: SEND_CID
if((cmd == 8'h49)||(cmd == 8'h4a))
read_state <= RD_STATE_SEND_TOKEN; // jump directly to data transmission
// CMD17: READ_SINGLE_BLOCK
if(cmd == 8'h51)
read_state <= RD_STATE_WAIT_IO; // start waiting for data from io controller
end
end
else if((reply_len > 0) && (byte_cnt == 5+NCR+1))
sd_sdo <= reply0[~bit_cnt];
else if((reply_len > 1) && (byte_cnt == 5+NCR+2))
sd_sdo <= reply1[~bit_cnt];
else if((reply_len > 2) && (byte_cnt == 5+NCR+3))
sd_sdo <= reply2[~bit_cnt];
else if((reply_len > 3) && (byte_cnt == 5+NCR+4))
sd_sdo <= reply3[~bit_cnt];
else
sd_sdo <= 1'b1;

// ---------- read state machine processing -------------

case(read_state)
RD_STATE_IDLE: ;
// don't do anything

// waiting for io controller to return data
RD_STATE_WAIT_IO: begin
if(rd_io_ack && (bit_cnt == 7))
read_state <= RD_STATE_SEND_TOKEN;
end

// send data token
RD_STATE_SEND_TOKEN: begin
sd_sdo <= READ_DATA_TOKEN[~bit_cnt];
if(bit_cnt == 7)
read_state <= RD_STATE_SEND_DATA; // next: send data
end
// send data
RD_STATE_SEND_DATA: begin
if(cmd == 8'h51) // CMD17: READ_SINGLE_BLOCK
sd_sdo <= buffer_byte[~bit_cnt];
else if(cmd == 8'h49) // CMD9: SEND_CSD
sd_sdo <= csd_byte[~bit_cnt];
else if(cmd == 8'h4a) // CMD10: SEND_CID
sd_sdo <= cid_byte[~bit_cnt];
else
sd_sdo <= 1'b1;

if(bit_cnt == 7) begin
core_buffer_read_strobe <= 1'b1;
// send 512 sector data bytes?
if((cmd == 8'h51) && (buffer_rptr == 511))
read_state <= RD_STATE_SEND_CRC0; // next: send crc
// send 16 cid/csd data bytes?
if(((cmd == 8'h49)||(cmd == 8'h4a)) && (buffer_rptr == 15))
read_state <= RD_STATE_IDLE; // return to idle state
end
end

// send crc[0]
RD_STATE_SEND_CRC0: begin
sd_sdo <= 1'b1;
if(bit_cnt == 7)
read_state <= RD_STATE_SEND_CRC1; // send second crc byte
end
// send crc[1]
RD_STATE_SEND_CRC1: begin
sd_sdo <= 1'b1;
if(bit_cnt == 7)
read_state <= RD_STATE_IDLE; // return to idle state
end
default:
illegal_state <= 1'b1;
// read_state <= RD_STATE_IDLE;
endcase
// ------------------ write support ----------------------
// send write data response
if(write_state == WR_STATE_SEND_DRESP)
sd_sdo <= WRITE_DATA_RESPONSE[~bit_cnt];
// busy after write until the io controller sends ack
if(write_state == WR_STATE_BUSY)
sd_sdo <= 1'b0;
end
end

// spi receiver
always @(posedge sd_sck or posedge sd_cs) begin
// cs is active low
if(sd_cs == 1) begin
bit_cnt <= 3'd0;
// byte_cnt <= 4'd15;
// write_state <= WR_STATE_IDLE;
// write_strobe <= 1'b0;
end else begin
new_cmd_rcvd <= 1'b0;
write_strobe <= 1'b0;
sbuf[6:0] <= { sbuf[5:0], sd_sdi };
bit_cnt <= bit_cnt + 3'd1;
// using wr_io_ack directly brings the write state machine into an
// non-existing state every now and then. For unknown reason
wr_io_ackD <= wr_io_ack;

// finished reading command byte
if(bit_cnt == 7) begin
// byte counter runs against 15 byte boundary
if(byte_cnt != 15)
byte_cnt <= byte_cnt + 8'd1;

// byte_cnt > 6 -> complete command received
// first byte of valid command is 01xxxxxx
if((byte_cnt > 5) && (write_state == WR_STATE_IDLE) && sbuf[6:5] == 2'b01)
byte_cnt <= 4'd0;

// don't accept new commands once a write command has been accepted
if((write_state == WR_STATE_IDLE) && (byte_cnt > 5)&&(sbuf[6:5] == 2'b01)) begin
cmd <= { sbuf, sd_sdi};
new_cmd_rcvd <= 1'b1;

// set cmd55 flag if previous command was 55
cmd55 <= (cmd == 8'h77);
end

// parse additional command bytes
if(byte_cnt == 0) lba[31:24] <= { sbuf, sd_sdi};
if(byte_cnt == 1) lba[23:16] <= { sbuf, sd_sdi};
if(byte_cnt == 2) lba[15:8] <= { sbuf, sd_sdi};
if(byte_cnt == 3) lba[7:0] <= { sbuf, sd_sdi};

// last byte received, evaluate
if(byte_cnt == 4) begin
// crc is currently unused
crc <= { sbuf, sd_sdi};
// default:
reply <= 8'h04; // illegal command
reply_len <= 4'd0; // no extra reply bytes
// CMD0: GO_IDLE_STATE
if(cmd == 8'h40)
reply <= 8'h01; // ok, busy

// CMD1: SEND_OP_COND
else if(cmd == 8'h41)
reply <= 8'h00; // ok, not busy
// CMD8: SEND_IF_COND (V2 only)
else if(cmd == 8'h48) begin
reply <= 8'h01; // ok, busy
reply0 <= 8'h00;
reply1 <= 8'h00;
reply2 <= 8'h01;
reply3 <= 8'hAA;
reply_len <= 4'd4;
end
// CMD9: SEND_CSD
else if(cmd == 8'h49)
reply <= 8'h00; // ok
// CMD10: SEND_CID
else if(cmd == 8'h4a)
reply <= 8'h00; // ok
// CMD16: SET_BLOCKLEN
else if(cmd == 8'h50) begin
// we only support a block size of 512
if(io_lba == 32'd512)
reply <= 8'h00; // ok
else
reply <= 8'h40; // parmeter error
end

// CMD17: READ_SINGLE_BLOCK
else if(cmd == 8'h51)
reply <= 8'h00; // ok

// CMD24: WRITE_BLOCK
else if(cmd == 8'h58) begin
reply <= 8'h00; // ok
write_state <= WR_STATE_EXP_DTOKEN; // expect data token
end

// ACMD41: APP_SEND_OP_COND
else if(cmd55 && (cmd == 8'h69))
reply <= 8'h00; // ok, not busy
// CMD55: APP_COND
else if(cmd == 8'h77)
reply <= 8'h01; // ok, busy

// CMD58: READ_OCR
else if(cmd == 8'h7a) begin
reply <= 8'h00; // ok
reply0 <= OCR[31:24]; // bit 30 = 1 -> high capacity card
reply1 <= OCR[23:16];
reply2 <= OCR[15:8];
reply3 <= OCR[7:0];
reply_len <= 4'd4;
end
end
// ---------- handle write -----------
// waiting for data token
if(write_state == WR_STATE_EXP_DTOKEN) begin
if({ sbuf, sd_sdi} == 8'hfe )
write_state <= WR_STATE_RECV_DATA;
end

// transfer 512 bytes
if(write_state == WR_STATE_RECV_DATA) begin
// push one byte into local buffer
write_strobe <= 1'b1;
write_data <= { sbuf, sd_sdi};
if(buffer_wptr == 511)
write_state <= WR_STATE_RECV_CRC0;
end
// transfer 1st crc byte
if(write_state == WR_STATE_RECV_CRC0)
write_state <= WR_STATE_RECV_CRC1;

// transfer 2nd crc byte
if(write_state == WR_STATE_RECV_CRC1)
write_state <= WR_STATE_SEND_DRESP;
// send data response
if(write_state == WR_STATE_SEND_DRESP)
write_state <= WR_STATE_BUSY;
end
// wait for io controller to accept data
// this happens outside the bit_cnt == 7 test as the
// transition may happen at any time
if(write_state == WR_STATE_BUSY && wr_io_ackD)
write_state <= WR_STATE_IDLE;
end
end

endmodule
(27-27/30)