Project

General

Profile

311 markw
-- ZX Spectrum for Altera DE1
--
-- Copyright (c) 2009-2010 Mike Stirling
--
-- All rights reserved
--
-- Redistribution and use in source and synthezised forms, with or without
-- modification, are permitted provided that the following conditions are met:
--
-- * Redistributions of source code must retain the above copyright notice,
-- this list of conditions and the following disclaimer.
--
-- * Redistributions in synthesized form must reproduce the above copyright
-- notice, this list of conditions and the following disclaimer in the
-- documentation and/or other materials provided with the distribution.
--
-- * Neither the name of the author nor the names of other contributors may
-- be used to endorse or promote products derived from this software without
-- specific prior written permission.
--
-- THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-- AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO,
-- THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
-- PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE
-- LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
-- CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF
-- SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS
-- INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN
-- CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE)
-- ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
-- POSSIBILITY OF SUCH DAMAGE.
--

library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.STD_LOGIC_ARITH.ALL;
use IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_MISC.ALL; -- for AND_REDUCE
use IEEE.NUMERIC_STD.ALL;

entity i2c_loader is
generic (
-- Address of slave to be loaded
device_address : integer := 16#1a#;
-- Number of retries to allow before stopping
num_retries : integer := 0;
-- Length of clock divider in bits. Resulting bus frequency is
-- CLK/2^(log2_divider + 2)
log2_divider : integer := 7
);

port (
CLK : in std_logic;
nRESET : in std_logic;

I2C_SCL : inout std_logic;
I2C_SDA : inout std_logic;

IS_DONE : out std_logic;
IS_ERROR : out std_logic
);
end i2c_loader;

architecture i2c_loader_arch of i2c_loader is
type regs is array(0 to 19) of std_logic_vector(7 downto 0);
constant init_regs : regs := (
-- Left line in, 0dB, mute
X"00", X"97",
-- Right line in, 0dB, mute
X"02", X"97",
-- Left headphone out, -29dB, zero cross disabled
--X"04", X"58",
X"04", X"68",
-- Right headphone out, -29dB, zero cross disabled
--X"06", X"58",
X"06", X"68",
-- Audio path, DAC enabled, Line in, Bypass off, mic muted
X"08", X"12",
-- Digital path, Unmute, HP filter enabled
X"0A", X"00",
-- Power down mic, clkout and xtal osc, line in and adc
X"0C", X"67",
-- Format 16-bit I2S, no bit inversion or phase changes, MASTER
X"0E", X"42",
-- Sampling control, Normal mode, mclk/2 used, We should provide 12.288MHz but will provide 12.25MHz - making 96KHz notional, 97.656KHz actual
X"10", X"DC",
-- Activate
X"12", X"01"
);
-- Number of bursts (i.e. total number of registers)
constant burst_length : positive := 2;
-- Number of bytes to transfer per burst
constant num_bursts : positive := (init_regs'length / burst_length);

type state_t is (Idle, Start, Data, Ack, Stop, Pause, Done);
signal state : state_t;
signal phase : std_logic_vector(1 downto 0);
subtype nbit_t is integer range 0 to 7;
signal nbit : nbit_t;
subtype nbyte_t is integer range 0 to burst_length; -- +1 for address byte
signal nbyte : nbyte_t;
subtype thisbyte_t is integer range 0 to init_regs'length; -- +1 for "done"
signal thisbyte : thisbyte_t;
subtype retries_t is integer range 0 to num_retries;
signal retries : retries_t;

signal clken : std_logic;
signal divider : std_logic_vector(log2_divider-1 downto 0);
signal shiftreg : std_logic_vector(7 downto 0);
signal scl_out : std_logic;
signal sda_out : std_logic;
signal nak : std_logic;
begin
-- Create open-drain outputs for I2C bus
I2C_SCL <= '0' when scl_out = '0' else 'Z';
I2C_SDA <= '0' when sda_out = '0' else 'Z';
-- Status outputs are driven both ways
IS_DONE <= '1' when state = Done else '0';
IS_ERROR <= nak;

-- Generate clock enable for desired bus speed
clken <= AND_REDUCE(divider);
process(nRESET,CLK)
begin
if nRESET = '0' then
divider <= (others => '0');
elsif falling_edge(CLK) then
divider <= divider + '1';
end if;
end process;

-- The I2C loader process
process(nRESET,CLK,clken)
begin
if nRESET = '0' then
scl_out <= '1';
sda_out <= '1';
state <= Idle;
phase <= "00";
nbit <= 0;
nbyte <= 0;
thisbyte <= 0;
shiftreg <= (others => '0');
nak <= '0'; -- No error
retries <= num_retries;
elsif rising_edge(CLK) and clken = '1' then
-- Next phase by default
phase <= phase + 1;

-- STATE: IDLE
if state = Idle then
-- Start loading the device registers straight away
-- A 'GO' bit could be polled here if required
state <= Start;
phase <= "00";
scl_out <= '1';
sda_out <= '1';

-- STATE: START
elsif state = Start then
-- Generate START condition
case phase is
when "00" =>
-- Drop SDA first
sda_out <= '0';
when "10" =>
-- Then drop SCL
scl_out <= '0';
when "11" =>
-- Advance to next state
-- Shift register loaded with device slave address
state <= Data;
nbit <= 7;
shiftreg <= std_logic_vector(to_unsigned(device_address,7)) & '0'; -- writing
nbyte <= burst_length;
when others =>
null;
end case;

-- STATE: DATA
elsif state = Data then
-- Generate data
case phase is
when "00" =>
-- Drop SCL
scl_out <= '0';
when "01" =>
-- Output data and shift (MSb first)
sda_out <= shiftreg(7);
shiftreg <= shiftreg(6 downto 0) & '0';
when "10" =>
-- Raise SCL
scl_out <= '1';
when "11" =>
-- Next bit or advance to next state when done
if nbit = 0 then
state <= Ack;
else
nbit <= nbit - 1;
end if;
when others =>
null;
end case;

-- STATE: ACK
elsif state = Ack then
-- Generate ACK clock and check for error condition
case phase is
when "00" =>
-- Drop SCL
scl_out <= '0';
when "01" =>
-- Float data
sda_out <= '1';
when "10" =>
-- Sample ack bit
nak <= I2C_SDA;
if I2C_SDA = '1' then
-- Error
nbyte <= 0; -- Close this burst and skip remaining registers
thisbyte <= init_regs'length;
else
-- Hold ACK to avoid spurious stops - this seems to fix a
-- problem with the Wolfson codec which releases the ACK
-- right on the falling edge of the clock pulse. It looks like
-- the device interprets this is a STOP condition and then fails
-- to acknowledge the next byte. We can avoid this by holding the
-- ACK condition for a little longer.
sda_out <= '0';
end if;
-- Raise SCL
scl_out <= '1';
when "11" =>
-- Advance to next state
if nbyte = 0 then
-- No more bytes in this burst - generate a STOP
state <= Stop;
else
-- Generate next byte
state <= Data;
nbit <= 7;
shiftreg <= init_regs(thisbyte);
nbyte <= nbyte - 1;
thisbyte <= thisbyte + 1;
end if;
when others =>
null;
end case;

-- STATE: STOP
elsif state = Stop then
-- Generate STOP condition
case phase is
when "00" =>
-- Drop SCL first
scl_out <= '0';
when "01" =>
-- Drop SDA
sda_out <= '0';
when "10" =>
-- Raise SCL
scl_out <= '1';
when "11" =>
if thisbyte = init_regs'length then
-- All registers done, advance to finished state. This will
-- bring SDA high while SCL is still high, completing the STOP
-- condition
state <= Done;
else
-- Load the next register after a short delay
state <= Pause;
end if;
when others =>
null;
end case;

-- STATE: PAUSE
elsif state = Pause then
-- Delay for one cycle of 'phase' then start the next burst
scl_out <= '1';
sda_out <= '1';
if phase = "11" then
state <= Start;
end if;

-- STATE: DONE
else
-- Finished
scl_out <= '1';
sda_out <= '1';

if nak = '1' and retries > 0 then
-- We can retry in the event of a NAK in case the
-- slave got out of sync for some reason
retries <= retries - 1;
state <= Idle;
end if;
end if;
end if;
end process;
end i2c_loader_arch;