Project

General

Profile

« Previous | Next » 

Revision 232

Added by markw almost 11 years ago

Made the sdcard one the main one - should be stable now with pll fix

View differences:

mist_5200_sdcard/atari800core.jdi
<sld_project_info>
<project>
<hash md5_digest_80b="7d0f11bf891bc55d775e"/>
</project>
<file_info/>
<hub_info ir_width="8" node_count="1"/>
<node_info>
<node hpath="sld_signaltap:auto_signaltap_0" instance_id="0" mfg_id="110" node_id="0" sld_node_info="0x30006E00" version="6">
<parameters>
<parameter name="lpm_type" type="string" value="sld_signaltap"/>
<parameter name="sld_node_info" type="unknown" value="805334528"/>
<parameter name="SLD_IP_VERSION" type="dec" value="6"/>
<parameter name="SLD_IP_MINOR_VERSION" type="dec" value="0"/>
<parameter name="SLD_COMMON_IP_VERSION" type="dec" value="0"/>
<parameter name="sld_data_bits" type="unknown" value="119"/>
<parameter name="sld_trigger_bits" type="unknown" value="119"/>
<parameter name="SLD_NODE_CRC_BITS" type="dec" value="32"/>
<parameter name="sld_node_crc_hiword" type="unknown" value="37736"/>
<parameter name="sld_node_crc_loword" type="unknown" value="25945"/>
<parameter name="SLD_INCREMENTAL_ROUTING" type="dec" value="0"/>
<parameter name="sld_sample_depth" type="unknown" value="2048"/>
<parameter name="sld_segment_size" type="unknown" value="2048"/>
<parameter name="SLD_RAM_BLOCK_TYPE" type="string" value="AUTO"/>
<parameter name="sld_state_bits" type="unknown" value="11"/>
<parameter name="sld_buffer_full_stop" type="unknown" value="1"/>
<parameter name="SLD_MEM_ADDRESS_BITS" type="dec" value="7"/>
<parameter name="SLD_DATA_BIT_CNTR_BITS" type="dec" value="4"/>
<parameter name="sld_trigger_level" type="unknown" value="1"/>
<parameter name="sld_trigger_in_enabled" type="unknown" value="0"/>
<parameter name="sld_advanced_trigger_entity" type="unknown" value="basic,1,"/>
<parameter name="sld_trigger_level_pipeline" type="unknown" value="1"/>
<parameter name="sld_enable_advanced_trigger" type="unknown" value="0"/>
<parameter name="SLD_ADVANCED_TRIGGER_1" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_2" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_3" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_4" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_5" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_6" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_7" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_8" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_9" type="string" value="NONE"/>
<parameter name="SLD_ADVANCED_TRIGGER_10" type="string" value="NONE"/>
<parameter name="sld_inversion_mask_length" type="unknown" value="382"/>
<parameter name="sld_inversion_mask" type="unknown" value="0000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000000"/>
<parameter name="sld_power_up_trigger" type="unknown" value="0"/>
<parameter name="SLD_STATE_FLOW_MGR_ENTITY" type="string" value="state_flow_mgr_entity.vhd"/>
<parameter name="sld_state_flow_use_generated" type="unknown" value="0"/>
<parameter name="sld_current_resource_width" type="unknown" value="1"/>
<parameter name="sld_attribute_mem_mode" type="unknown" value="OFF"/>
<parameter name="SLD_STORAGE_QUALIFIER_BITS" type="dec" value="1"/>
<parameter name="SLD_STORAGE_QUALIFIER_GAP_RECORD" type="dec" value="0"/>
<parameter name="SLD_STORAGE_QUALIFIER_MODE" type="string" value="OFF"/>
<parameter name="SLD_STORAGE_QUALIFIER_ENABLE_ADVANCED_CONDITION" type="dec" value="0"/>
<parameter name="sld_storage_qualifier_inversion_mask_length" type="unknown" value="0"/>
<parameter name="SLD_STORAGE_QUALIFIER_ADVANCED_CONDITION_ENTITY" type="string" value="basic"/>
<parameter name="SLD_STORAGE_QUALIFIER_PIPELINE" type="dec" value="0"/>
</parameters>
<inputs/>
<outputs/>
</node>
</node_info>
</sld_project_info>
mist_5200_sdcard/pll_pal_post.cmp
--Copyright (C) 1991-2013 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions
--and other software and tools, and its AMPP partner logic
--functions, and any output files from any of the foregoing
--(including device programming or simulation files), and any
--associated documentation or information are expressly subject
--to the terms and conditions of the Altera Program License
--Subscription Agreement, Altera MegaCore Function License
--Agreement, or other applicable license agreement, including,
--without limitation, that your use is for the sole purpose of
--programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors. Please refer to the
--applicable agreement for further details.
component pll_pal_post
PORT
(
areset : IN STD_LOGIC := '0';
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC ;
c1 : OUT STD_LOGIC ;
c2 : OUT STD_LOGIC ;
c3 : OUT STD_LOGIC ;
locked : OUT STD_LOGIC
);
end component;
mist_5200_sdcard/pll_pal_pre.cmp
--Copyright (C) 1991-2013 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions
--and other software and tools, and its AMPP partner logic
--functions, and any output files from any of the foregoing
--(including device programming or simulation files), and any
--associated documentation or information are expressly subject
--to the terms and conditions of the Altera Program License
--Subscription Agreement, Altera MegaCore Function License
--Agreement, or other applicable license agreement, including,
--without limitation, that your use is for the sole purpose of
--programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors. Please refer to the
--applicable agreement for further details.
component pll_pal_pre
PORT
(
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC ;
locked : OUT STD_LOGIC
);
end component;
mist_5200_sdcard/atari800core.sdc
create_clock -period 27MHz [get_ports CLOCK_27[0]]
derive_pll_clocks
create_generated_clock -name sdclk_pin -source [get_pins {clock|altpll_component|auto_generated|pll1|clk[2]}] [get_ports {SDRAM_CLK}]
derive_clock_uncertainty
set_input_delay -clock sdclk_pin -max 6.4 [get_ports SDRAM_DQ*]
set_input_delay -clock sdclk_pin -min 3.2 [get_ports SDRAM_DQ*]
set_output_delay -clock sdclk_pin -max 1.5 [get_ports SDRAM_*]
set_output_delay -clock sdclk_pin -min -0.8 [get_ports SDRAM_*]
set_multicycle_path -from [get_clocks {sdclk_pin}] -to [get_clocks {clock|altpll_component|auto_generated|pll1|clk[0]}] -setup -end 2
mist_5200_sdcard/mist_sector_buffer.qip
set_global_assignment -name IP_TOOL_NAME "RAM: 2-PORT"
set_global_assignment -name IP_TOOL_VERSION "12.1"
set_global_assignment -name VHDL_FILE [file join $::quartus(qip_path) "mist_sector_buffer.vhd"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "mist_sector_buffer.cmp"]
mist_5200_sdcard/simulate_data_io.sh
#!/bin/bash
echo "---------------------------------------------------------"
echo "Use 'simulate -run' to skip compilation stage."
echo "Use 'simulate -view' to show previous simulation results."
echo "---------------------------------------------------------"
name=data_io
. /home/markw/fpga/xilinx/14.7/ISE_DS/settings64.sh
mkdir -p sim
pushd sim
# if we have a WDB file, we can view it if requested (otherwise we remove it)
if [ ! -e $name.wdb -o "$1" != "-view" ]; then
rm -f $name.wdb
# if we have a EXE, we can run it if requested (otherwise we remove it)
if [ ! -e $name.exe -o "$1" != "-run" ]; then
rm -f $name.exe
# copy testbench files
cp -p ../tb_data/* .
# copy source files
cp ../data_io.vhdl .
cp ../../common/components/spi_master.vhd .
cp ../../common/components/generic_ram_infer.vhdl .
# set up project definition file
ls *.v | perl -e 'while (<>){s/(.*)/verilog work $1/;print $_;}' | cat > $name.prj
ls *.vhd* | perl -e 'while (<>){s/(.*)/vhdl work $1/;print $_;}' | cat >> $name.prj
echo NumericStdNoWarnings = 1 >> xilinxsim.ini
# verbose & no multthreading - fallback in case of problems
# fuse -v 1 -mt off -incremental -prj %name%.prj -o %name%.exe -t %name%
fuse -timeprecision_vhdl 1fs -incremental -prj $name.prj -o $name.exe -t ${name}_tb || exit 1
# fuse --mt off -prj %name%.prj -o %name%.exe -t %name%_tb
# Check for the EXE again, independent of the errorlevel of fuse...
[ -e $name.exe ] || echo "No simulation executable created"
fi
# Open the iSIM GUI and run the simulation
./$name.exe -gui -f ../$name.cmd -wdb $name.wdb -log $name.log -view ../$name.wcfg || exit 1
#strace ./$name.exe -gui -f ../$name.cmd -wdb $name.wdb -log $name.log -view ../$name.wcfg >& out
#./$name.exe -h -log $name.log
else
# Only start the viewer on an existing wave configuration (from an old simulation)
isimgui -view ../$name.wcfg || exit 1
fi
popd
mist_5200_sdcard/pll_pal_post.qip
set_global_assignment -name IP_TOOL_NAME "ALTPLL"
set_global_assignment -name IP_TOOL_VERSION "13.0"
set_global_assignment -name VHDL_FILE [file join $::quartus(qip_path) "pll_pal_post.vhd"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "pll_pal_post.cmp"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "pll_pal_post.ppf"]
mist_5200_sdcard/pll_pal_pre.qip
set_global_assignment -name IP_TOOL_NAME "ALTPLL"
set_global_assignment -name IP_TOOL_VERSION "13.0"
set_global_assignment -name VHDL_FILE [file join $::quartus(qip_path) "pll_pal_pre.vhd"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "pll_pal_pre.cmp"]
set_global_assignment -name MISC_FILE [file join $::quartus(qip_path) "pll_pal_pre.ppf"]
mist_5200_sdcard/data_io.wcfg
<?xml version="1.0" encoding="UTF-8"?>
<wave_config>
<wave_state>
</wave_state>
<db_ref_list>
<db_ref path="data_io.wdb" id="1" type="auto">
<top_modules>
<top_module name="data_io_tb" />
<top_module name="numeric_std" />
<top_module name="std_logic_1164" />
<top_module name="std_logic_arith" />
<top_module name="std_logic_textio" />
<top_module name="std_logic_unsigned" />
<top_module name="textio" />
</top_modules>
</db_ref>
</db_ref_list>
<WVObjectSize size="19" />
<wvobject fp_name="/data_io_tb/reset_n" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">reset_n</obj_property>
<obj_property name="ObjectShortName">reset_n</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/request" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">request</obj_property>
<obj_property name="ObjectShortName">request</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/write" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">write</obj_property>
<obj_property name="ObjectShortName">write</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/ready" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">ready</obj_property>
<obj_property name="ObjectShortName">ready</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_miso" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">spi_miso</obj_property>
<obj_property name="ObjectShortName">spi_miso</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_mosi" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">spi_mosi</obj_property>
<obj_property name="ObjectShortName">spi_mosi</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_clk" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">spi_clk</obj_property>
<obj_property name="ObjectShortName">spi_clk</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_tx_data" type="array" db_ref_id="1">
<obj_property name="ElementShortName">spi_tx_data[7:0]</obj_property>
<obj_property name="ObjectShortName">spi_tx_data[7:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_rx_data" type="array" db_ref_id="1">
<obj_property name="ElementShortName">spi_rx_data[7:0]</obj_property>
<obj_property name="ObjectShortName">spi_rx_data[7:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_busy" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">spi_busy</obj_property>
<obj_property name="ObjectShortName">spi_busy</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_enable" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">spi_enable</obj_property>
<obj_property name="ObjectShortName">spi_enable</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/data_io/cmd_reg" type="array" db_ref_id="1">
<obj_property name="ElementShortName">cmd_reg[7:0]</obj_property>
<obj_property name="ObjectShortName">cmd_reg[7:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/data_io/cnt_reg" type="array" db_ref_id="1">
<obj_property name="ElementShortName">cnt_reg[15:0]</obj_property>
<obj_property name="ObjectShortName">cnt_reg[15:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/data_io/sbuf_reg" type="array" db_ref_id="1">
<obj_property name="ElementShortName">sbuf_reg[6:0]</obj_property>
<obj_property name="ObjectShortName">sbuf_reg[6:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/addr" type="array" db_ref_id="1">
<obj_property name="ElementShortName">addr[8:0]</obj_property>
<obj_property name="ObjectShortName">addr[8:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/data_out" type="array" db_ref_id="1">
<obj_property name="ElementShortName">data_out[7:0]</obj_property>
<obj_property name="ObjectShortName">data_out[7:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/data_in" type="array" db_ref_id="1">
<obj_property name="ElementShortName">data_in[7:0]</obj_property>
<obj_property name="ObjectShortName">data_in[7:0]</obj_property>
<obj_property name="Radix">HEXRADIX</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/wr_en" type="logic" db_ref_id="1">
<obj_property name="ElementShortName">wr_en</obj_property>
<obj_property name="ObjectShortName">wr_en</obj_property>
</wvobject>
<wvobject fp_name="/data_io_tb/spi_ss_io" type="array" db_ref_id="1">
<obj_property name="ElementShortName">spi_ss_io[1:0]</obj_property>
<obj_property name="ObjectShortName">spi_ss_io[1:0]</obj_property>
</wvobject>
</wave_config>
mist_5200_sdcard/atari800core.qpf
# -------------------------------------------------------------------------- #
#
# Copyright (C) 1991-2012 Altera Corporation
# Your use of Altera Corporation's design tools, logic functions
# and other software and tools, and its AMPP partner logic
# functions, and any output files from any of the foregoing
# (including device programming or simulation files), and any
# associated documentation or information are expressly subject
# to the terms and conditions of the Altera Program License
# Subscription Agreement, Altera MegaCore Function License
# Agreement, or other applicable license agreement, including,
# without limitation, that your use is for the sole purpose of
# programming logic devices manufactured by Altera and sold by
# Altera or its authorized distributors. Please refer to the
# applicable agreement for further details.
#
# -------------------------------------------------------------------------- #
#
# Quartus II 64-Bit
# Version 12.1 Build 243 01/31/2013 Service Pack 1 SJ Web Edition
# Date created = 13:58:38 April 11, 2013
#
# -------------------------------------------------------------------------- #
QUARTUS_VERSION = "12.1"
DATE = "13:58:38 April 11, 2013"
# Revisions
PROJECT_REVISION = "atari800core"
mist_5200_sdcard/makeqsf
#!/usr/bin/perl -w
use strict;
my $qsf_in = shift @ARGV;
my $qsf_out = $qsf_in;
$qsf_out =~ s/.*\///;
open (QSF_IN,$qsf_in) or die "Failed to open $qsf_in";
my @qsf_base = <QSF_IN>;
close (QSF_IN);
open (QSF_OUT,">$qsf_out") or die "Failed to open $qsf_out";
print QSF_OUT @qsf_base;
print QSF_OUT "\n";
foreach (@ARGV)
{
my @vhdl = glob ("$_/*.vhd");
push @vhdl, glob ("$_/*.vhdl");
my @verilog = glob ("$_/*.v");
my @qip = glob ("$_/*.qip");
foreach (@verilog)
{
print QSF_OUT "set_global_assignment -name VERILOG_FILE $_\n";
}
foreach (@vhdl)
{
print QSF_OUT "set_global_assignment -name VHDL_FILE $_\n";
}
foreach (@qip)
{
print QSF_OUT "set_global_assignment -name QIP_FILE $_\n";
}
}
close (QSF_OUT);
mist_5200_sdcard/pll_ntsc.cmp
--Copyright (C) 1991-2013 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions
--and other software and tools, and its AMPP partner logic
--functions, and any output files from any of the foregoing
--(including device programming or simulation files), and any
--associated documentation or information are expressly subject
--to the terms and conditions of the Altera Program License
--Subscription Agreement, Altera MegaCore Function License
--Agreement, or other applicable license agreement, including,
--without limitation, that your use is for the sole purpose of
--programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors. Please refer to the
--applicable agreement for further details.
component pll_ntsc
PORT
(
inclk0 : IN STD_LOGIC := '0';
c0 : OUT STD_LOGIC ;
c1 : OUT STD_LOGIC ;
c2 : OUT STD_LOGIC ;
c3 : OUT STD_LOGIC ;
locked : OUT STD_LOGIC
);
end component;
mist_5200_sdcard/tb_data/data_io_tb.vhd
library ieee;
use ieee.std_logic_1164.all;
use ieee.std_logic_unsigned.all;
use ieee.numeric_std.all;
use ieee.std_logic_textio.all;
library std_developerskit ; -- used for to_string
-- use std_developerskit.std_iopak.all;
entity data_io_tb is
end;
architecture rtl of data_io_tb is
constant CLK_A_PERIOD : time := 1 us / (1.79*32);
signal CLK_A : std_logic;
signal reset_n : std_logic;
signal spi_clk : std_logic;
signal spi_ss_io : std_logic_vector(1 downto 0);
signal spi_miso : std_logic;
signal spi_mosi : std_logic;
signal request : std_logic;
signal write : std_logic;
signal ready : std_logic;
signal sector : std_logic_vector(23 downto 0);
signal addr : std_logic_vector(8 downto 0);
signal data_out : std_logic_vector(7 downto 0);
signal data_in : std_logic_vector(7 downto 0);
signal wr_en : std_logic;
signal spi_enable : std_logic;
signal spi_tx_data : std_logic_vector(7 downto 0);
signal spi_rx_data : std_logic_vector(7 downto 0);
signal spi_busy : std_logic;
signal spi_addr : integer;
begin
p_clk_gen_a : process
begin
clk_a <= '1';
wait for CLK_A_PERIOD/2;
clk_a <= '0';
wait for CLK_A_PERIOD - (CLK_A_PERIOD/2 );
end process;
reset_n <= '0', '1' after 1000ns;
spi_master1 : entity work.spi_master
generic map(slaves=>2,d_width=>8)
port map (clock=>clk_a,reset_n=>reset_n,enable=>spi_enable,cpol=>'0',cpha=>'0',cont=>'0',clk_div=>4,addr=>spi_addr,
tx_data=>spi_tx_data, miso=>spi_miso,sclk=>spi_clk,ss_n=>spi_ss_io,mosi=>spi_mosi,
rx_data=>spi_rx_data,busy=>spi_busy);
spi_fake : process
variable type_conv : std_logic_vector(8 downto 0);
begin
spi_enable <= '0';
spi_addr <= 0;
wait for 1500us;
spi_tx_data <= x"50";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 3 loop
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_addr <= 1;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
spi_addr <= 0;
wait for 20us;
spi_tx_data <= x"51";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 511 loop
type_conv := std_logic_vector(to_unsigned(i,9));
spi_tx_data <= type_conv(7 downto 0);
spi_enable <= '1';
wait for CLK_A_PERIOD*4;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
-- NEXT
spi_addr <= 1;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
spi_addr <= 0;
wait for 20us;
spi_tx_data <= x"50";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 3 loop
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_addr <= 1;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
spi_addr <= 0;
wait for 20us;
spi_tx_data <= x"51";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 511 loop
type_conv := std_logic_vector(to_unsigned(511-i,9));
spi_tx_data <= type_conv(7 downto 0);
spi_enable <= '1';
wait for CLK_A_PERIOD*4;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
-- NEXT - WRITE...
spi_addr <= 1;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
spi_addr <= 0;
wait for 20us;
spi_tx_data <= x"50";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 3 loop
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_addr <= 1;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
spi_addr <= 0;
wait for 20us;
spi_tx_data <= x"52";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
for i in 0 to 511 loop
spi_tx_data <= x"FF";
spi_enable <= '1';
wait for CLK_A_PERIOD*4;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
end loop;
spi_tx_data <= x"ff";
spi_enable <= '1';
wait for CLK_A_PERIOD*2;
spi_tx_data <= x"FF";
spi_enable <= '0';
wait until spi_busy='0';
wait for 100ms;
end process;
spi_request : process
begin
sector <= (others=>'0');
request <= '0';
write <= '0';
wait for 1500us;
sector <= x"123456";
request <= '1';
wait until ready = '1';
request <= '0';
wait for CLK_A_PERIOD*20;
wait until ready = '0';
sector <= x"654321";
request <= '1';
wait until ready = '1';
request <= '0';
wait for CLK_A_PERIOD*20;
wait until ready = '0';
sector <= x"111111";
write <= '1';
wait until ready = '1';
write <= '0';
wait for CLK_A_PERIOD*20;
wait until ready = '0';
wait for 100ms;
end process;
ram : entity work.generic_ram_infer
generic map
(
ADDRESS_WIDTH => 9,
SPACE => 512,
DATA_WIDTH => 8
)
PORT map
(
clock => spi_clk,
data => data_out,
address => addr,
we => wr_en,
q => data_in
);
data_io : entity work.data_io
PORT MAP
(
CLK => spi_clk,
RESET_n =>reset_n,
-- SPI connection - up to upstream to make miso 'Z' on ss_io going high
SPI_CLK => spi_clk,
SPI_SS_IO => spi_ss_io(0),
SPI_MISO => spi_miso,
SPI_MOSI => spi_mosi,
-- Sector access request
read_request => request,
write_request => write,
sector => sector,
ready => ready,
-- DMA to RAM
ADDR => addr,
DATA_OUT => data_out,
DATA_IN => data_in,
WR_EN => wr_en
);
end rtl;
mist_5200_sdcard/sd_card.v
//
// sd_card.v
//
// This file implelents a sd card for the MIST board since on the board
// the SD card is connected to the ARM IO controller and the FPGA has no
// direct connection to the SD card. This file provides a SD card like
// interface to the IO controller easing porting of cores that expect
// a direct interface to the SD card.
//
// Copyright (c) 2014 Till Harbaum <till@harbaum.org>
//
// This source file is free software: you can redistribute it and/or modify
// it under the terms of the Lesser GNU General Public License as published
// by the Free Software Foundation, either version 3 of the License, or
// (at your option) any later version.
//
// This source file is distributed in the hope that it will be useful,
// but WITHOUT ANY WARRANTY; without even the implied warranty of
// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
// GNU General Public License for more details.
//
// You should have received a copy of the GNU General Public License
// along with this program. If not, see <http://www.gnu.org/licenses/>.
//
// http://elm-chan.org/docs/mmc/mmc_e.html
// TODO:
// - CMD9: SEND_CSD (requires device capacity)
// - CMD10: SEND_CID
module sd_card (
// link to user_io for io controller
output [31:0] io_lba,
output reg io_rd,
output reg io_wr,
input io_ack,
output io_conf,
output io_sdhc,
// data coming in from io controller
input [7:0] io_din,
input io_din_strobe,
// data going out to io controller
output [7:0] io_dout,
input io_dout_strobe,
// configuration input
input allow_sdhc,
input sd_cs,
input sd_sck,
input sd_sdi,
output reg sd_sdo
);
// set io_rd once read_state machine starts waiting (rising edge of req_io_rd)
// and clear it once io controller uploads something (io_ack==1)
wire req_io_rd = (read_state == RD_STATE_WAIT_IO);
always @(posedge req_io_rd or posedge io_ack) begin
if(io_ack) io_rd <= 1'b0;
else io_rd <= 1'b1;
end
wire req_io_wr = (write_state == WR_STATE_BUSY);
always @(posedge req_io_wr or posedge io_ack) begin
if(io_ack) io_wr <= 1'b0;
else io_wr <= 1'b1;
end
wire [31:0] OCR = { 1'b0, io_sdhc, 30'h0 }; // bit30 = 1 -> high capaciry card (sdhc)
wire [7:0] READ_DATA_TOKEN = 8'hfe;
localparam NCR=4;
// 0=idle, 1=wait for io ctrl, 2=wait for byte start, 3=send token, 4=send data, 5/6=send crc[0..1]
localparam RD_STATE_IDLE = 3'd0;
localparam RD_STATE_WAIT_IO = 3'd1;
localparam RD_STATE_WAIT_START = 3'd2;
localparam RD_STATE_SEND_TOKEN = 3'd3;
localparam RD_STATE_SEND_DATA = 3'd4;
localparam RD_STATE_SEND_CRC0 = 3'd5;
localparam RD_STATE_SEND_CRC1 = 3'd6;
reg [2:0] read_state = RD_STATE_IDLE;
// 0=idle
localparam WR_STATE_IDLE = 3'd0;
localparam WR_STATE_EXP_DTOKEN = 3'd1;
localparam WR_STATE_RECV_DATA = 3'd2;
localparam WR_STATE_RECV_CRC0 = 3'd3;
localparam WR_STATE_RECV_CRC1 = 3'd4;
localparam WR_STATE_SEND_DRESP = 3'd5;
localparam WR_STATE_BUSY = 3'd6;
reg [2:0] write_state = WR_STATE_IDLE;
reg [6:0] sbuf;
reg cmd55;
reg new_cmd_rcvd;
reg [7:0] cmd;
reg [2:0] bit_cnt; // counts bits 0-7 0-7 ...
reg [3:0] byte_cnt= 4'd15; // counts bytes
reg [31:0] lba;
assign io_lba = io_sdhc?lba:{9'd0, lba[31:9]};
// the command crc is actually never evaluated
reg [7:0] crc;
reg [7:0] reply;
reg [7:0] reply0, reply1, reply2, reply3;
reg [3:0] reply_len;
// signals to address buffer on SD card write (data coming from SD spi)
reg write_strobe;
reg [7:0] write_data;
// falling edge of io_ack signals that a sector to be read has been written into
// the sector bufffer by the io controller. This signal is kept set as long
// as the read state machine is in the "wait for io controller" state (state 1)
wire rd_wait_io = (read_state == RD_STATE_WAIT_IO);
reg rd_io_ack = 1'b0 /* synthesis noprune */;
always @(negedge io_ack or negedge rd_wait_io) begin
if(!rd_wait_io) rd_io_ack <= 1'b0;
else rd_io_ack <= 1'b1;
end
wire wr_wait_io = (write_state == WR_STATE_BUSY);
reg wr_io_ack = 1'b0 /* synthesis noprune */;
always @(negedge io_ack or negedge wr_wait_io) begin
if(!wr_wait_io) wr_io_ack <= 1'b0;
else wr_io_ack <= 1'b1;
end
// ------------------------- SECTOR BUFFER -----------------------
// access to the sector buffer is multiplexed. When reading sectors
// the io controller writes into the buffer and the sd card implementation
// reads. And vice versa when writing sectors
wire reading = (read_state != RD_STATE_IDLE);
wire writing = (write_state != WR_STATE_IDLE);
// the buffer itself. Can hold one sector
reg [8:0] buffer_wptr;
reg [8:0] buffer_rptr;
reg [7:0] buffer [511:0];
reg [7:0] buffer_byte;
// ---------------- buffer read engine -----------------------
reg core_buffer_read_strobe;
wire buffer_read_latch = reading?sd_sck:io_dout_strobe;
wire buffer_read_strobe = reading?core_buffer_read_strobe:!io_dout_strobe;
assign io_dout = buffer_byte;
// sdo is sampled on negative sd clock so set it on positive edge
always @(posedge buffer_read_latch)
buffer_byte <= buffer[buffer_rptr];
always @(posedge buffer_read_strobe or posedge new_cmd_rcvd) begin
if(new_cmd_rcvd == 1) buffer_rptr <= 9'd0;
else buffer_rptr <= buffer_rptr + 9'd1;
end
// ---------------- buffer write engine -----------------------
wire [7:0] buffer_din = reading?io_din:write_data;
wire buffer_din_strobe = reading?io_din_strobe:write_strobe;
always @(negedge buffer_din_strobe or posedge new_cmd_rcvd) begin
if(new_cmd_rcvd == 1) begin
buffer_wptr <= 9'd0;
end else begin
buffer[buffer_wptr] <= buffer_din;
buffer_wptr <= buffer_wptr + 9'd1;
end
end
wire [7:0] WRITE_DATA_RESPONSE = 8'h05;
// ------------------------- CSD/CID BUFFER ----------------------
assign io_conf = (csd_wptr == 0); // csd_wptr still 0 -> configuration required
// the 32 bytes as sent from the io controller
reg [7:0] cid [15:0];
reg [7:0] csd [15:0];
reg [7:0] conf;
reg [7:0] cid_byte;
reg [7:0] csd_byte;
reg [5:0] csd_wptr = 6'd0;
// conf[0]==1 -> io controller is using an sdhc card
wire io_has_sdhc = conf[0];
assign io_sdhc = allow_sdhc && io_has_sdhc;
always @(negedge io_din_strobe) begin
// if io controller sends data without asserting io_ack, then it's
// updating the config
if(!io_ack && (csd_wptr <= 32)) begin
if(csd_wptr < 16) // first 16 bytes are cid
cid[csd_wptr] <= io_din;
if((csd_wptr >= 16) && (csd_wptr < 32)) // then comes csd
csd[csd_wptr-16] <= io_din;
if(csd_wptr == 32) // finally a config byte
conf <= io_din;
csd_wptr <= csd_wptr + 1;
end
end
always @(posedge buffer_read_latch)
cid_byte <= cid[buffer_rptr];
always @(posedge buffer_read_latch)
csd_byte <= csd[buffer_rptr];
// ----------------- spi transmitter --------------------
reg rd_io_ackD, wr_io_ackD;
always@(negedge sd_sck or posedge sd_cs) begin
if(sd_cs == 1) begin
// sd_sdo <= 1'b1;
// read_state <= RD_STATE_IDLE;
end else begin
core_buffer_read_strobe <= 1'b0;
// using rd_io_ack directly brings the read state machine into an
// non-existing state every now and then. For unknown reason
rd_io_ackD <= rd_io_ack;
// -------- catch read commmand and reset read state machine ------
if(bit_cnt == 7) begin
if(byte_cnt == 4) begin
// CMD17: READ_SINGLE_BLOCK
if(cmd == 8'h51)
read_state <= RD_STATE_WAIT_IO; // start waiting for data from io controller
end
end
if(byte_cnt < 5+NCR) begin
sd_sdo <= 1'b1; // reply $ff -> wait
end else begin
if(byte_cnt == 5+NCR) begin
sd_sdo <= reply[~bit_cnt];
if(bit_cnt == 7) begin
// CMD9: SEND_CSD
// CMD10: SEND_CID
if((cmd == 8'h49)||(cmd == 8'h4a))
read_state <= RD_STATE_SEND_TOKEN; // jump directly to data transmission
end
end
else if((reply_len > 0) && (byte_cnt == 5+NCR+1))
sd_sdo <= reply0[~bit_cnt];
else if((reply_len > 1) && (byte_cnt == 5+NCR+2))
sd_sdo <= reply1[~bit_cnt];
else if((reply_len > 2) && (byte_cnt == 5+NCR+3))
sd_sdo <= reply2[~bit_cnt];
else if((reply_len > 3) && (byte_cnt == 5+NCR+4))
sd_sdo <= reply3[~bit_cnt];
else
sd_sdo <= 1'b1;
// falling edge of io_ack signals end of incoming data stream
if((read_state == RD_STATE_WAIT_IO) && rd_io_ackD)
read_state <= RD_STATE_WAIT_START;
// wait for begin of new byte
else if((read_state == RD_STATE_WAIT_START) && (bit_cnt == 7))
read_state <= RD_STATE_SEND_TOKEN;
// send data token
else if(read_state == RD_STATE_SEND_TOKEN) begin
sd_sdo <= READ_DATA_TOKEN[~bit_cnt];
if(bit_cnt == 7)
read_state <= RD_STATE_SEND_DATA; // next: send data
end
// send data
else if(read_state == RD_STATE_SEND_DATA) begin
if(cmd == 8'h51) // CMD17: READ_SINGLE_BLOCK
sd_sdo <= buffer_byte[~bit_cnt];
else if(cmd == 8'h49) // CMD9: SEND_CSD
sd_sdo <= csd_byte[~bit_cnt];
else if(cmd == 8'h4a) // CMD10: SEND_CID
sd_sdo <= cid_byte[~bit_cnt];
if(bit_cnt == 7) begin
core_buffer_read_strobe <= 1'b1;
// send 512 sector data bytes?
if((cmd == 8'h51) && (buffer_rptr == 511))
read_state <= RD_STATE_SEND_CRC0; // next: send crc
// send 16 cid/csd data bytes?
if(((cmd == 8'h49)||(cmd == 8'h4a)) && (buffer_rptr == 15))
read_state <= RD_STATE_IDLE; // return to idle state
end
end
// send crc[0]
else if(read_state == RD_STATE_SEND_CRC0) begin
sd_sdo <= 1'b1;
if(bit_cnt == 7)
read_state <= RD_STATE_SEND_CRC1; // send second crc byte
end
// send crc[1]
else if(read_state == RD_STATE_SEND_CRC1) begin
sd_sdo <= 1'b1;
if(bit_cnt == 7)
read_state <= RD_STATE_IDLE; // return to idle state
end
// ------------------ write support ----------------------
// send write data response
if(write_state == WR_STATE_SEND_DRESP)
sd_sdo <= WRITE_DATA_RESPONSE[~bit_cnt];
// busy after write until the io controller sends ack
if(write_state == WR_STATE_BUSY)
sd_sdo <= 1'b0;
end
end
end
// spi receiver
always @(posedge sd_sck or posedge sd_cs) begin
// cs is active low
if(sd_cs == 1) begin
bit_cnt <= 3'd0;
// byte_cnt <= 4'd15;
// write_state <= WR_STATE_IDLE;
// write_strobe <= 1'b0;
end else begin
new_cmd_rcvd <= 1'b0;
write_strobe <= 1'b0;
sbuf[6:0] <= { sbuf[5:0], sd_sdi };
bit_cnt <= bit_cnt + 3'd1;
// using wr_io_ack directly brings the write state machine into an
// non-existing state every now and then. For unknown reason
wr_io_ackD <= wr_io_ack;
// finished reading command byte
if(bit_cnt == 7) begin
// byte counter runs against 15 byte boundary
if(byte_cnt != 15)
byte_cnt <= byte_cnt + 8'd1;
// byte_cnt > 6 -> complete command received
// first byte of valid command is 01xxxxxx
if((byte_cnt > 5) && (write_state == WR_STATE_IDLE) && sbuf[6:5] == 2'b01)
byte_cnt <= 4'd0;
// don't accept new commands once a write command has been accepted
if((write_state == WR_STATE_IDLE) && (byte_cnt > 5)&&(sbuf[6:5] == 2'b01)) begin
cmd <= { sbuf, sd_sdi};
new_cmd_rcvd <= 1'b1;
// set cmd55 flag if previous command was 55
cmd55 <= (cmd == 8'h77);
end
// parse additional command bytes
if(byte_cnt == 0) lba[31:24] <= { sbuf, sd_sdi};
if(byte_cnt == 1) lba[23:16] <= { sbuf, sd_sdi};
if(byte_cnt == 2) lba[15:8] <= { sbuf, sd_sdi};
if(byte_cnt == 3) lba[7:0] <= { sbuf, sd_sdi};
// last byte received, evaluate
if(byte_cnt == 4) begin
// crc is currently unused
crc <= { sbuf, sd_sdi};
// default:
reply <= 8'h04; // illegal command
reply_len <= 4'd0; // no extra reply bytes
// CMD0: GO_IDLE_STATE
if(cmd == 8'h40)
reply <= 8'h01; // ok, busy
// CMD1: SEND_OP_COND
else if(cmd == 8'h41)
reply <= 8'h00; // ok, not busy
// CMD8: SEND_IF_COND (V2 only)
else if(cmd == 8'h48) begin
reply <= 8'h01; // ok, busy
reply0 <= 8'h00;
reply1 <= 8'h00;
reply2 <= 8'h01;
reply3 <= 8'hAA;
reply_len <= 4'd4;
end
// CMD9: SEND_CSD
else if(cmd == 8'h49)
reply <= 8'h00; // ok
// CMD10: SEND_CID
else if(cmd == 8'h4a)
reply <= 8'h00; // ok
// CMD16: SET_BLOCKLEN
else if(cmd == 8'h50) begin
// we only support a block size of 512
if(io_lba == 32'd512)
reply <= 8'h00; // ok
else
reply <= 8'h40; // parmeter error
end
// CMD17: READ_SINGLE_BLOCK
else if(cmd == 8'h51)
reply <= 8'h00; // ok
// CMD24: WRITE_BLOCK
else if(cmd == 8'h58) begin
reply <= 8'h00; // ok
write_state <= WR_STATE_EXP_DTOKEN; // expect data token
end
// ACMD41: APP_SEND_OP_COND
else if(cmd55 && (cmd == 8'h69))
reply <= 8'h00; // ok, not busy
// CMD55: APP_COND
else if(cmd == 8'h77)
reply <= 8'h01; // ok, busy
// CMD58: READ_OCR
else if(cmd == 8'h7a) begin
reply <= 8'h00; // ok
reply0 <= OCR[31:24]; // bit 30 = 1 -> high capacity card
reply1 <= OCR[23:16];
reply2 <= OCR[15:8];
reply3 <= OCR[7:0];
reply_len <= 4'd4;
end
end
// ---------- handle write -----------
// waiting for data token
if(write_state == WR_STATE_EXP_DTOKEN) begin
if({ sbuf, sd_sdi} == 8'hfe )
write_state <= WR_STATE_RECV_DATA;
end
// transfer 512 bytes
if(write_state == WR_STATE_RECV_DATA) begin
// push one byte into local buffer
write_strobe <= 1'b1;
write_data <= { sbuf, sd_sdi};
if(buffer_wptr == 511)
write_state <= WR_STATE_RECV_CRC0;
end
// transfer 1st crc byte
if(write_state == WR_STATE_RECV_CRC0)
write_state <= WR_STATE_RECV_CRC1;
// transfer 2nd crc byte
if(write_state == WR_STATE_RECV_CRC1)
write_state <= WR_STATE_SEND_DRESP;
// send data response
if(write_state == WR_STATE_SEND_DRESP)
write_state <= WR_STATE_BUSY;
end
// wait for io controller to accept data
// this happens outside the bit_cnt == 7 test as the
// transition may happen at any time
if(write_state == WR_STATE_BUSY && wr_io_ackD)
write_state <= WR_STATE_IDLE;
end
end
endmodule
mist_5200_sdcard/mist_sector_buffer.vhd
-- megafunction wizard: %RAM: 2-PORT%
-- GENERATION: STANDARD
-- VERSION: WM1.0
-- MODULE: altsyncram
-- ============================================================
-- File Name: mist_sector_buffer.vhd
-- Megafunction Name(s):
-- altsyncram
--
-- Simulation Library Files(s):
-- altera_mf
-- ============================================================
-- ************************************************************
-- THIS IS A WIZARD-GENERATED FILE. DO NOT EDIT THIS FILE!
--
-- 12.1 Build 243 01/31/2013 SP 1.33 SJ Web Edition
-- ************************************************************
--Copyright (C) 1991-2012 Altera Corporation
--Your use of Altera Corporation's design tools, logic functions
--and other software and tools, and its AMPP partner logic
--functions, and any output files from any of the foregoing
--(including device programming or simulation files), and any
--associated documentation or information are expressly subject
--to the terms and conditions of the Altera Program License
--Subscription Agreement, Altera MegaCore Function License
--Agreement, or other applicable license agreement, including,
--without limitation, that your use is for the sole purpose of
--programming logic devices manufactured by Altera and sold by
--Altera or its authorized distributors. Please refer to the
--applicable agreement for further details.
LIBRARY ieee;
USE ieee.std_logic_1164.all;
LIBRARY altera_mf;
USE altera_mf.all;
ENTITY mist_sector_buffer IS
PORT
(
address_a : IN STD_LOGIC_VECTOR (8 DOWNTO 0);
address_b : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
clock_a : IN STD_LOGIC := '1';
clock_b : IN STD_LOGIC ;
data_a : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
data_b : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
wren_a : IN STD_LOGIC := '0';
wren_b : IN STD_LOGIC := '0';
q_a : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
);
END mist_sector_buffer;
ARCHITECTURE SYN OF mist_sector_buffer IS
SIGNAL sub_wire0 : STD_LOGIC_VECTOR (7 DOWNTO 0);
SIGNAL sub_wire1 : STD_LOGIC_VECTOR (31 DOWNTO 0);
COMPONENT altsyncram
GENERIC (
address_reg_b : STRING;
clock_enable_input_a : STRING;
clock_enable_input_b : STRING;
clock_enable_output_a : STRING;
clock_enable_output_b : STRING;
indata_reg_b : STRING;
intended_device_family : STRING;
lpm_type : STRING;
numwords_a : NATURAL;
numwords_b : NATURAL;
operation_mode : STRING;
outdata_aclr_a : STRING;
outdata_aclr_b : STRING;
outdata_reg_a : STRING;
outdata_reg_b : STRING;
power_up_uninitialized : STRING;
read_during_write_mode_port_a : STRING;
read_during_write_mode_port_b : STRING;
widthad_a : NATURAL;
widthad_b : NATURAL;
width_a : NATURAL;
width_b : NATURAL;
width_byteena_a : NATURAL;
width_byteena_b : NATURAL;
wrcontrol_wraddress_reg_b : STRING
);
PORT (
clock0 : IN STD_LOGIC ;
wren_a : IN STD_LOGIC ;
address_b : IN STD_LOGIC_VECTOR (6 DOWNTO 0);
clock1 : IN STD_LOGIC ;
data_b : IN STD_LOGIC_VECTOR (31 DOWNTO 0);
q_a : OUT STD_LOGIC_VECTOR (7 DOWNTO 0);
wren_b : IN STD_LOGIC ;
address_a : IN STD_LOGIC_VECTOR (8 DOWNTO 0);
data_a : IN STD_LOGIC_VECTOR (7 DOWNTO 0);
q_b : OUT STD_LOGIC_VECTOR (31 DOWNTO 0)
);
END COMPONENT;
BEGIN
q_a <= sub_wire0(7 DOWNTO 0);
q_b <= sub_wire1(31 DOWNTO 0);
altsyncram_component : altsyncram
GENERIC MAP (
address_reg_b => "CLOCK1",
clock_enable_input_a => "BYPASS",
clock_enable_input_b => "BYPASS",
clock_enable_output_a => "BYPASS",
clock_enable_output_b => "BYPASS",
indata_reg_b => "CLOCK1",
intended_device_family => "Cyclone III",
lpm_type => "altsyncram",
numwords_a => 512,
numwords_b => 128,
operation_mode => "BIDIR_DUAL_PORT",
outdata_aclr_a => "NONE",
outdata_aclr_b => "NONE",
outdata_reg_a => "UNREGISTERED",
outdata_reg_b => "UNREGISTERED",
power_up_uninitialized => "FALSE",
read_during_write_mode_port_a => "NEW_DATA_NO_NBE_READ",
read_during_write_mode_port_b => "NEW_DATA_NO_NBE_READ",
widthad_a => 9,
widthad_b => 7,
width_a => 8,
width_b => 32,
width_byteena_a => 1,
width_byteena_b => 1,
wrcontrol_wraddress_reg_b => "CLOCK1"
)
PORT MAP (
clock0 => clock_a,
wren_a => wren_a,
address_b => address_b,
clock1 => clock_b,
data_b => data_b,
wren_b => wren_b,
address_a => address_a,
data_a => data_a,
q_a => sub_wire0,
q_b => sub_wire1
);
END SYN;
-- ============================================================
-- CNX file retrieval info
-- ============================================================
-- Retrieval info: PRIVATE: ADDRESSSTALL_A NUMERIC "0"
-- Retrieval info: PRIVATE: ADDRESSSTALL_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTEENA_ACLR_A NUMERIC "0"
-- Retrieval info: PRIVATE: BYTEENA_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_ENABLE_A NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_ENABLE_B NUMERIC "0"
-- Retrieval info: PRIVATE: BYTE_SIZE NUMERIC "8"
-- Retrieval info: PRIVATE: BlankMemory NUMERIC "1"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_A NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_INPUT_B NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_A NUMERIC "0"
-- Retrieval info: PRIVATE: CLOCK_ENABLE_OUTPUT_B NUMERIC "0"
-- Retrieval info: PRIVATE: CLRdata NUMERIC "0"
-- Retrieval info: PRIVATE: CLRq NUMERIC "0"
-- Retrieval info: PRIVATE: CLRrdaddress NUMERIC "0"
-- Retrieval info: PRIVATE: CLRrren NUMERIC "0"
-- Retrieval info: PRIVATE: CLRwraddress NUMERIC "0"
-- Retrieval info: PRIVATE: CLRwren NUMERIC "0"
-- Retrieval info: PRIVATE: Clock NUMERIC "5"
-- Retrieval info: PRIVATE: Clock_A NUMERIC "0"
-- Retrieval info: PRIVATE: Clock_B NUMERIC "0"
-- Retrieval info: PRIVATE: IMPLEMENT_IN_LES NUMERIC "0"
-- Retrieval info: PRIVATE: INDATA_ACLR_B NUMERIC "0"
-- Retrieval info: PRIVATE: INDATA_REG_B NUMERIC "1"
-- Retrieval info: PRIVATE: INIT_FILE_LAYOUT STRING "PORT_A"
-- Retrieval info: PRIVATE: INIT_TO_SIM_X NUMERIC "0"
-- Retrieval info: PRIVATE: INTENDED_DEVICE_FAMILY STRING "Cyclone III"
-- Retrieval info: PRIVATE: JTAG_ENABLED NUMERIC "0"
... This diff was truncated because it exceeds the maximum size that can be displayed.

Also available in: Unified diff