Project

General

Profile

« Previous | Next » 

Revision 145

Added by markw about 11 years ago

Added normal reset button behaviour. Debounce for now is just enable at 10hz! Applied that to scanlines button.

View differences:

chameleon/atari800core.qsf
set_global_assignment -name VHDL_FILE chameleon_io.vhd
set_global_assignment -name VHDL_FILE chameleon_cdtv_remote.vhd
set_global_assignment -name VHDL_FILE chameleon_c64_joykeyb.vhd
set_global_assignment -name VHDL_FILE gen_usart.vhd
set_global_assignment -name VHDL_FILE chameleon_usb.vhd
set_global_assignment -name VHDL_FILE atari800core_chameleon.vhd
set_global_assignment -name QIP_FILE pll.qip
set_global_assignment -name RESERVE_DATA0_AFTER_CONFIGURATION "USE AS REGULAR IO"
chameleon/atari800core_chameleon.vhd
LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;
use IEEE.STD_LOGIC_MISC.all;
LIBRARY work;
......
-- signal mux_d_reg : unsigned(3 downto 0) := (others => '1');
-- reset from chameleon
signal chameleon_reset_n_next : std_logic;
signal chameleon_reset_n_reg : std_logic;
signal chameleon_reset_n_next : std_logic_vector(9 downto 0);
signal chameleon_reset_n_reg : std_logic_vector(9 downto 0);
signal reset_short_next : std_logic;
signal reset_short_reg : std_logic;
signal reset_long_next : std_logic;
signal reset_long_reg : std_logic;
signal reconfig_next : std_logic;
signal reconfig_reg : std_logic;
-- LEDs
-- signal led_green : std_logic;
-- signal led_red : std_logic;
-- clocks...
signal ena_1mhz : std_logic;
signal ena_1mhz : std_logic; --fast clk
signal ena_1khz : std_logic;
--signal phi2 : std_logic;
signal no_clock : std_logic;
signal ena_10khz : std_logic; --slow clk
signal ena_10hz : std_logic;
-- Docking station
signal docking_station : std_logic;
--signal docking_ena : std_logic;
......
signal scanlines_next : std_logic;
signal scanlines_reg : std_logic;
signal freeze_n_reg : std_logic;
signal freeze_n_next : std_logic;
signal freeze_n_sync : std_logic;
-- microcontroller (for slot flash)
signal to_usb_rx : std_logic;
begin
pal <= '1' when tv=1 else '0';
vga <= '1' when video=2 else '0';
......
ena_1khz => ena_1khz
);
-- -----------------------------------------------------------------------
-- Phi 2
-- -----------------------------------------------------------------------
......
mux_q => mux_q,
-- USB microcontroller (To RX of micro)
-- to_usb_rx : in std_logic := '1';
to_usb_rx => to_usb_rx,
-- C64 timing (only for C64 related cores)
phi_mode => not(PAL),
......
-- ps2_mouse_dat_in: out std_logic;
-- Buttons
button_reset_n => chameleon_reset_n_next,
button_reset_n => chameleon_reset_n_next(0),
-- Joysticks
joystick1 => docking_joystick1,
......
);
pause_atari <= zpu_out1(0);
reset_atari <= zpu_out1(1) or not(chameleon_reset_n_reg);
reset_atari <= zpu_out1(1) or reset_short_reg;
speed_6502 <= zpu_out1(7 downto 2);
ram_select <= zpu_out1(10 downto 8);
rom_select <= zpu_out1(16 downto 11);
......
select_sync : entity work.synchronizer
PORT MAP ( CLK => clk, raw => freeze_n, sync=>freeze_n_sync);
process(scanlines_reg, freeze_n_sync, freeze_n_reg)
process(scanlines_reg, freeze_n_sync, freeze_n_reg, ena_10hz)
begin
scanlines_next <= scanlines_reg;
if (freeze_n_reg = '1' and freeze_n_sync = '0')then
scanlines_next <= not(scanlines_reg);
freeze_n_next <= freeze_n_reg;
if (ena_10hz = '1') then
freeze_n_next <= freeze_n_sync;
if (freeze_n_reg = '1' and freeze_n_sync = '0')then
scanlines_next <= not(scanlines_reg);
end if;
end if;
end process;
......
if (reset_n='0') then
scanlines_reg <= '0';
freeze_n_reg <= '1';
chameleon_reset_n_reg <= '1';
chameleon_reset_n_reg <= (others=>'1');
ir_fkeys_reg <= (others=>'0');
reconfig_reg <= '0';
reset_long_reg <= '0';
reset_short_reg <= '0';
elsif (clk'event and clk = '1') then
scanlines_reg <= scanlines_next;
freeze_n_reg <= freeze_n_sync;
freeze_n_reg <= freeze_n_next;
chameleon_reset_n_reg <= chameleon_reset_n_next;
ir_fkeys_reg <= ir_fkeys_next;
reconfig_reg <= reconfig_next;
reset_long_reg <= reset_long_next;
reset_short_reg <= reset_short_next;
end if;
end process;
-- 10hz for crappy debounce!
my10khz : entity work.enable_divider
generic map (
count => 5700
)
port map (
clk => clk,
reset_n => reset_n,
enable_in => '1',
enable_out => ena_10khz
);
my10hz : entity work.enable_divider
generic map (
count => 1000
)
port map (
clk => clk,
reset_n => reset_n,
enable_in => ena_10khz,
enable_out => ena_10hz
);
process(ena_10hz, chameleon_reset_n_reg, reconfig_reg, reset_long_reg, reset_short_reg)
begin
reconfig_next <= reconfig_reg;
chameleon_reset_n_next(9 downto 1) <= chameleon_reset_n_reg(9 downto 1);
reset_short_next <= reset_short_reg;
reset_long_next <= reset_long_reg;
reconfig_next <= reconfig_reg or reset_long_reg;
if (ena_10hz = '1') then
reset_short_next <= '0';
reset_long_next <= '0';
chameleon_reset_n_next(9 downto 1) <= chameleon_reset_n_reg(8 downto 0);
if (chameleon_reset_n_reg(0) = '0') then
reset_short_next <= '1';
end if;
if (or_reduce(chameleon_reset_n_reg(9 downto 0)) = '0') then
reset_long_next <= '1';
end if;
end if;
end process;
usb : entity work.chameleon_usb
port map (
clk => clk_sdram,
req => open,
we => open,
a => open,
q => open,
reconfig => reconfig_reg,
reconfig_slot => "0000",
flashslot => open,
-- talk to microcontroller
serial_clk => usart_clk,
serial_rxd => usart_tx,
serial_txd => to_usb_rx,
serial_cts_n => usart_rts,
serial_debug_trigger => open,
serial_debug_data => open
);
end vhdl;
chameleon/build.sh
`cp *pll*.* $dir`;
`cp *.vhdl $dir`;
`cp chameleon_*.* $dir`;
`cp gen_*.* $dir`;
`cp zpu_rom.vhdl $dir`;
`cp atari800core.sdc $dir`;
`mkdir $dir/common`;
chameleon/chameleon_usb.vhd
-- -----------------------------------------------------------------------
--
-- Turbo Chameleon
--
-- Multi purpose FPGA expansion for the Commodore 64 computer
--
-- -----------------------------------------------------------------------
-- Copyright 2005-2010 by Peter Wendrich (pwsoft@syntiac.com)
-- All Rights Reserved.
--
-- http://www.syntiac.com/chameleon.html
-- -----------------------------------------------------------------------
--
-- Chameleon USB micro communication
--
-- -----------------------------------------------------------------------
-- clk - system clock
-- req - toggles on a access request (read & write)
-- ack - toggled by system when the request is processed.
-- we - write enable, is high during write actions
-- a - 32 bits address bus
-- d - data input
-- q - data output
-- flashslot - Slot number (0-15) in flash where FPGA is started from.
-- Highest bit is valid-bit, is set when slot number is valid.
-- serial_clk - clock of synchronous serial communication
-- serial_rxd - serial receive data
-- serial_txd - serial send data
-- serial_cts_n - clear to send inverted. When low USB micro is ready to
-- receive bytes.
-- -----------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.all;
-- -----------------------------------------------------------------------
entity chameleon_usb is
port (
clk : in std_logic;
req : out std_logic;
ack : in std_logic := '0';
we : out std_logic;
a : out unsigned(31 downto 0);
d : in unsigned(7 downto 0) := (others => '0');
q : out unsigned(7 downto 0);
reconfig : in std_logic := '0';
reconfig_slot : in unsigned(3 downto 0) := (others => '0');
flashslot : out unsigned(4 downto 0);
serial_clk : in std_logic;
serial_rxd : in std_logic := '1';
serial_txd : out std_logic;
serial_cts_n : in std_logic := '0';
serial_debug_trigger : out std_logic;
serial_debug_data : out unsigned(8 downto 0)
);
end entity;
-- -----------------------------------------------------------------------
architecture rtl of chameleon_usb is
type state_t is (
STATE_RESET, STATE_IDLE,
STATE_READ, STATE_READ_ACK, STATE_WRITE, STATE_WRITE_ACK,
STATE_ADDR0, STATE_ADDR1, STATE_ADDR2, STATE_ADDR3,
STATE_LEN0, STATE_LEN1, STATE_LEN2);
type command_t is (
CMD_NONE, CMD_READ, CMD_WRITE);
signal req_reg : std_logic := '0';
signal state : state_t := STATE_RESET;
signal flashslot_reg : unsigned(4 downto 0) := (others => '0');
signal recv_trigger : std_logic;
signal recv_data : unsigned(8 downto 0) := (others => '0');
signal send_trigger : std_logic := '0';
signal send_empty : std_logic;
signal send_data : unsigned(8 downto 0) := (others => '0');
signal command : command_t := CMD_NONE;
signal cmd_length : unsigned(23 downto 0) := (others => '0');
signal cmd_address : unsigned(31 downto 0) := (others => '0');
begin
req <= req_reg;
we <= '1' when ((state = STATE_WRITE) or (state = STATE_WRITE_ACK)) else '0';
a <= cmd_address;
flashslot <= flashslot_reg;
serial_debug_trigger <= recv_trigger;
serial_debug_data <= recv_data;
-- -----------------------------------------------------------------------
myUsart : entity work.gen_usart
generic map (
bits => 9
)
port map (
clk => clk,
d => send_data,
d_trigger => send_trigger,
d_empty => send_empty,
q => recv_data,
q_trigger => recv_trigger,
serial_clk => serial_clk,
serial_rxd => serial_rxd,
serial_txd => serial_txd,
serial_cts_n => serial_cts_n
);
process(clk)
begin
if rising_edge(clk) then
send_trigger <= '0';
case state is
when STATE_RESET =>
if send_empty = '1' then
send_data <= "100101010"; -- 42, 0x12A
send_trigger <= '1';
end if;
when STATE_IDLE =>
if (send_empty = '1') and (reconfig = '1') then
send_data <= "11111" & reconfig_slot;
send_trigger <= '1';
end if;
when STATE_READ =>
if (req_reg = ack) and (send_empty = '1') then
req_reg <= not req_reg;
state <= STATE_READ_ACK;
end if;
when STATE_READ_ACK =>
if (req_reg = ack) then
send_data <= "0" & d;
send_trigger <= '1';
cmd_address <= cmd_address + 1;
if cmd_length = 0 then
state <= STATE_IDLE;
else
cmd_length <= cmd_length - 1;
state <= STATE_READ;
end if;
end if;
when STATE_WRITE_ACK =>
if req_reg = ack then
cmd_address <= cmd_address + 1;
state <= STATE_WRITE;
end if;
when others =>
null;
end case;
if recv_trigger = '1' then
if recv_data(8) = '1' then
case recv_data(7 downto 0) is
when X"00" =>
command <= CMD_NONE;
state <= STATE_IDLE;
when X"01" =>
command <= CMD_WRITE;
state <= STATE_ADDR3;
when X"02" =>
command <= CMD_READ;
state <= STATE_ADDR3;
when X"10" | X"11" | X"12" | X"13" | X"14" | X"15" | X"16" | X"17"
| X"18" | X"19" | X"1A" | X"1B" | X"1C" | X"1D" | X"1E" | X"1F" =>
flashslot_reg <= recv_data(4 downto 0);
command <= CMD_NONE;
state <= STATE_IDLE;
when others =>
command <= CMD_NONE;
state <= STATE_IDLE;
end case;
else
case state is
when STATE_WRITE =>
q <= recv_data(7 downto 0);
req_reg <= not req_reg;
state <= STATE_WRITE_ACK;
when STATE_ADDR0 =>
cmd_address(7 downto 0) <= recv_data(7 downto 0);
case command is
when CMD_READ =>
state <= STATE_LEN2;
when CMD_WRITE =>
state <= STATE_WRITE;
when others =>
state <= STATE_IDLE;
end case;
when STATE_ADDR1 =>
cmd_address(15 downto 8) <= recv_data(7 downto 0);
state <= STATE_ADDR0;
when STATE_ADDR2 =>
cmd_address(23 downto 16) <= recv_data(7 downto 0);
state <= STATE_ADDR1;
when STATE_ADDR3 =>
cmd_address(31 downto 24) <= recv_data(7 downto 0);
state <= STATE_ADDR2;
when STATE_LEN0 =>
cmd_length(7 downto 0) <= recv_data(7 downto 0);
state <= STATE_READ;
when STATE_LEN1 =>
cmd_length(15 downto 8) <= recv_data(7 downto 0);
state <= STATE_LEN0;
when STATE_LEN2 =>
cmd_length(23 downto 16) <= recv_data(7 downto 0);
state <= STATE_LEN1;
when others =>
null;
end case;
end if;
end if;
end if;
end process;
end architecture;
chameleon/gen_usart.vhd
-- -----------------------------------------------------------------------
--
-- Syntiac's generic VHDL support files.
--
-- -----------------------------------------------------------------------
-- Copyright 2005-2010 by Peter Wendrich (pwsoft@syntiac.com)
-- http://www.syntiac.com/?.html
-- -----------------------------------------------------------------------
--
-- gen_usart.vhd
--
-- -----------------------------------------------------------------------
--
-- USART - Synchronous serial receiver/transmitter
--
-- -----------------------------------------------------------------------
library IEEE;
use IEEE.STD_LOGIC_1164.ALL;
use IEEE.numeric_std.ALL;
-- -----------------------------------------------------------------------
entity gen_usart is
generic (
bits : integer := 8
);
port (
clk : in std_logic;
d : in unsigned(bits-1 downto 0) := (others => '0');
d_trigger : in std_logic := '0';
d_empty : out std_logic;
q : out unsigned(bits-1 downto 0);
q_trigger : out std_logic;
serial_clk : in std_logic;
serial_rxd : in std_logic := '1';
serial_txd : out std_logic;
serial_cts_n : in std_logic := '0'
);
end entity;
-- -----------------------------------------------------------------------
architecture rtl of gen_usart is
type state_t is (
STATE_IDLE,
STATE_BITS,
STATE_STOP);
signal serial_clk_reg : std_logic := '0';
signal serial_clk_dly : std_logic := '0';
signal receive_state : state_t := STATE_IDLE;
signal receive_shift : unsigned(bits-1 downto 0) := (others => '0');
signal receive_cnt : integer range 0 to bits-1 := 0;
signal transmit_state : state_t := STATE_IDLE;
signal transmit_empty : std_logic := '1';
signal transmit_buffer : unsigned(bits-1 downto 0) := (others => '0');
signal transmit_shift : unsigned(bits-1 downto 0) := (others => '0');
signal transmit_cnt : integer range 0 to bits-1 := 0;
begin
d_empty <= transmit_empty and (not d_trigger);
process(clk)
begin
if rising_edge(clk) then
serial_clk_reg <= serial_clk;
serial_clk_dly <= serial_clk_reg;
end if;
end process;
receive_process: process(clk)
begin
if rising_edge(clk) then
q_trigger <= '0';
-- Detect rising edge
if (serial_clk_reg = '1') and (serial_clk_dly = '0') then
case receive_state is
when STATE_IDLE =>
receive_cnt <= 0;
if serial_rxd = '0' then
receive_state <= STATE_BITS;
end if;
when STATE_BITS =>
receive_shift <= serial_rxd & receive_shift(receive_shift'high downto 1);
if receive_cnt = bits-1 then
receive_state <= STATE_STOP;
else
receive_cnt <= receive_cnt + 1;
end if;
when STATE_STOP =>
receive_state <= STATE_IDLE;
if serial_rxd = '1' then
q <= receive_shift;
q_trigger <= '1';
end if;
end case;
end if;
end if;
end process;
transmit_process: process(clk)
begin
if rising_edge(clk) then
-- Detect falling edge
if (serial_clk_reg = '0') and (serial_clk_dly = '1') then
case transmit_state is
when STATE_IDLE =>
transmit_cnt <= 0;
if (transmit_empty = '0') and (serial_cts_n = '0') then
transmit_shift <= transmit_buffer;
transmit_empty <= '1';
transmit_state <= STATE_BITS;
serial_txd <= '0';
else
serial_txd <= '1';
end if;
when STATE_BITS =>
serial_txd <= transmit_shift(transmit_cnt);
if transmit_cnt = bits-1 then
transmit_state <= STATE_STOP;
else
transmit_cnt <= transmit_cnt + 1;
end if;
when STATE_STOP =>
serial_txd <= '1';
transmit_state <= STATE_IDLE;
end case;
end if;
if d_trigger = '1' then
transmit_buffer <= d;
transmit_empty <= '0';
end if;
end if;
end process;
end architecture;

Also available in: Unified diff