Project

General

Profile

/*
Copyright (c) 2003, Dominik Reichl <dominik.reichl@t-online.de>
All rights reserved.

LICENSE TERMS

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

* Redistributions of source code must retain the above copyright notice, this
list of conditions and the following disclaimer.
* Redistributions in binary form must reproduce the above copyright notice,
this list of conditions and the following disclaimer in the documentation
and/or other materials provided with the distribution.
* Neither the name of ReichlSoft nor the names of its contributors may be used
to endorse or promote products derived from this software without specific
prior written permission.

DISCLAIMER

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

#include "gosthash.h"

static bool g_bTablesInitialized = false;

static UWORD32 g_pSBox1[256];
static UWORD32 g_pSBox2[256];
static UWORD32 g_pSBox3[256];
static UWORD32 g_pSBox4[256];

#define GOST_ENCRYPT_ROUND(k1, k2) \
t = (k1) + r; \
l ^= g_pSBox1[t & 0xFF] ^ g_pSBox2[(t >> 8) & 0xFF] ^ \
g_pSBox3[(t >> 16) & 0xFF] ^ g_pSBox4[t >> 24]; \
t = (k2) + l; \
r ^= g_pSBox1[t & 0xFF] ^ g_pSBox2[(t >> 8) & 0xFF] ^ \
g_pSBox3[(t >> 16) & 0xFF] ^ g_pSBox4[t >> 24];

#define GOST_ENCRYPT(k0) \
GOST_ENCRYPT_ROUND(k0[0], k0[1]) \
GOST_ENCRYPT_ROUND(k0[2], k0[3]) \
GOST_ENCRYPT_ROUND(k0[4], k0[5]) \
GOST_ENCRYPT_ROUND(k0[6], k0[7]) \
GOST_ENCRYPT_ROUND(k0[0], k0[1]) \
GOST_ENCRYPT_ROUND(k0[2], k0[3]) \
GOST_ENCRYPT_ROUND(k0[4], k0[5]) \
GOST_ENCRYPT_ROUND(k0[6], k0[7]) \
GOST_ENCRYPT_ROUND(k0[0], k0[1]) \
GOST_ENCRYPT_ROUND(k0[2], k0[3]) \
GOST_ENCRYPT_ROUND(k0[4], k0[5]) \
GOST_ENCRYPT_ROUND(k0[6], k0[7]) \
GOST_ENCRYPT_ROUND(k0[7], k0[6]) \
GOST_ENCRYPT_ROUND(k0[5], k0[4]) \
GOST_ENCRYPT_ROUND(k0[3], k0[2]) \
GOST_ENCRYPT_ROUND(k0[1], k0[0]) \
t = r; \
r = l; \
l = t;

void _gostMakeTables()
{
INTPREF a, b, i;
UWORD32 ax, bx, cx, dx;

const UWORD32 uStdSBox[8][16] = // 4-bit SBox
{
{ 4, 10, 9, 2, 13, 8, 0, 14, 6, 11, 1, 12, 7, 15, 5, 3 },
{ 14, 11, 4, 12, 6, 13, 15, 10, 2, 3, 8, 1, 0, 7, 5, 9 },
{ 5, 8, 1, 13, 10, 3, 4, 2, 14, 15, 12, 7, 6, 0, 9, 11 },
{ 7, 13, 10, 1, 0, 8, 9, 15, 14, 4, 6, 12, 11, 2, 5, 3 },
{ 6, 12, 7, 1, 5, 15, 13, 8, 4, 10, 9, 14, 0, 3, 11, 2 },
{ 4, 11, 10, 0, 7, 2, 1, 13, 3, 6, 8, 5, 9, 12, 15, 14 },
{ 13, 11, 4, 1, 3, 15, 5, 9, 0, 10, 14, 7, 6, 8, 2, 12 },
{ 1, 15, 13, 0, 5, 7, 10, 4, 9, 2, 3, 14, 6, 11, 8, 12 }
};

i = 0;
for(a = 0; a < 16; a++)
{
ax = uStdSBox[1][a] << 15;
bx = uStdSBox[3][a] << 23;
cx = uStdSBox[5][a];
cx = (cx >> 1) | (cx << 31);
dx = uStdSBox[7][a] << 7;

for(b = 0; b < 16; b++)
{
g_pSBox1[i ] = ax | (uStdSBox[0][b] << 11);
g_pSBox2[i ] = bx | (uStdSBox[2][b] << 19);
g_pSBox3[i ] = cx | (uStdSBox[4][b] << 27);
g_pSBox4[i++] = dx | (uStdSBox[6][b] << 3);
}
}
}

CGOSTHash::CGOSTHash()
{
}

CGOSTHash::~CGOSTHash()
{
}

void CGOSTHash::Init(RH_DATA_INFO *pInfo)
{
if(g_bTablesInitialized == false)
{
_gostMakeTables();
g_bTablesInitialized = true;
}

memset(m_sum, 0, 32);
memset(m_hash, 0, 32);
memset(m_len, 0, 32);
memset(m_partial, 0, 32);
m_partial_bytes = 0;
}

void CGOSTHash::_Compress(UWORD32 *h, UWORD32 *m)
{
INTPREF i;
UWORD32 l, r, t, k0[8], u[8], v[8], w[8], s[8];

memcpy(u, h, 32);
memcpy(v, m, 32);

for(i = 0; i < 8; i += 2)
{
w[0] = u[0] ^ v[0]; // w = u XOR v
w[1] = u[1] ^ v[1];
w[2] = u[2] ^ v[2];
w[3] = u[3] ^ v[3];
w[4] = u[4] ^ v[4];
w[5] = u[5] ^ v[5];
w[6] = u[6] ^ v[6];
w[7] = u[7] ^ v[7];

// P transformation

k0[0] = (w[0] & 0x000000FF) | ((w[2] & 0x000000FF) << 8) |
((w[4] & 0x000000FF) << 16) | ((w[6] & 0x000000FF) << 24);
k0[1] = ((w[0] & 0x0000FF00) >> 8) | (w[2] & 0x0000FF00) |
((w[4] & 0x0000FF00) << 8) | ((w[6] & 0x0000FF00) << 16);
k0[2] = ((w[0] & 0x00FF0000) >> 16) | ((w[2] & 0x00FF0000) >> 8) |
(w[4] & 0x00FF0000) | ((w[6] & 0x00FF0000) << 8);
k0[3] = ((w[0] & 0xFF000000) >> 24) | ((w[2] & 0xFF000000) >> 16) |
((w[4] & 0xFF000000) >> 8) | (w[6] & 0xFF000000);
k0[4] = (w[1] & 0x000000FF) | ((w[3] & 0x000000FF) << 8) |
((w[5] & 0x000000FF) << 16) | ((w[7] & 0x000000FF) << 24);
k0[5] = ((w[1] & 0x0000FF00) >> 8) | (w[3] & 0x0000FF00) |
((w[5] & 0x0000FF00) << 8) | ((w[7] & 0x0000FF00) << 16);
k0[6] = ((w[1] & 0x00FF0000) >> 16) | ((w[3] & 0x00FF0000) >> 8) |
(w[5] & 0x00FF0000) | ((w[7] & 0x00FF0000) << 8);
k0[7] = ((w[1] & 0xFF000000) >> 24) | ((w[3] & 0xFF000000) >> 16) |
((w[5] & 0xFF000000) >> 8) | (w[7] & 0xFF000000);

r = h[i];
l = h[i + 1];
GOST_ENCRYPT(k0);

s[i] = r;
s[i + 1] = l;

if(i == 6) break;

l = u[0] ^ u[2]; // U = A(U)
r = u[1] ^ u[3];
u[0] = u[2];
u[1] = u[3];
u[2] = u[4];
u[3] = u[5];
u[4] = u[6];
u[5] = u[7];
u[6] = l;
u[7] = r;

if(i == 2) // Constant C_3
{
u[0] ^= 0xFF00FF00;
u[1] ^= 0xFF00FF00;
u[2] ^= 0x00FF00FF;
u[3] ^= 0x00FF00FF;
u[4] ^= 0x00FFFF00;
u[5] ^= 0xFF0000FF;
u[6] ^= 0x000000FF;
u[7] ^= 0xFF00FFFF;
}

l = v[0]; // V = A(A(V))
r = v[2];
v[0] = v[4];
v[2] = v[6];
v[4] = l ^ r;
v[6] = v[0] ^ r;
l = v[1];
r = v[3];
v[1] = v[5];
v[3] = v[7];
v[5] = l ^ r;
v[7] = v[1] ^ r;
}

// 12 rounds of the LFSR (computed from a product matrix) and XOR in M
u[0] = m[0] ^ s[6];
u[1] = m[1] ^ s[7];
u[2] = m[2] ^ (s[0] << 16) ^ (s[0] >> 16) ^ (s[0] & 0xFFFF) ^
(s[1] & 0xFFFF) ^ (s[1] >> 16) ^ (s[2] << 16) ^ s[6] ^ (s[6] << 16) ^
(s[7] & 0xFFFF0000) ^ (s[7] >> 16);
u[3] = m[3] ^ (s[0] & 0xFFFF) ^ (s[0] << 16) ^ (s[1] & 0xFFFF) ^
(s[1] << 16) ^ (s[1] >> 16) ^ (s[2] << 16) ^ (s[2] >> 16) ^
(s[3] << 16) ^ s[6] ^ (s[6] << 16) ^ (s[6] >> 16) ^ (s[7] & 0xFFFF) ^
(s[7] << 16) ^ (s[7] >> 16);
u[4] = m[4] ^
(s[0] & 0xFFFF0000) ^ (s[0] << 16) ^ (s[0] >> 16) ^
(s[1] & 0xFFFF0000) ^ (s[1] >> 16) ^ (s[2] << 16) ^ (s[2] >> 16) ^
(s[3] << 16) ^ (s[3] >> 16) ^ (s[4] << 16) ^ (s[6] << 16) ^
(s[6] >> 16) ^(s[7] & 0xFFFF) ^ (s[7] << 16) ^ (s[7] >> 16);
u[5] = m[5] ^ (s[0] << 16) ^ (s[0] >> 16) ^ (s[0] & 0xFFFF0000) ^
(s[1] & 0xFFFF) ^ s[2] ^ (s[2] >> 16) ^ (s[3] << 16) ^ (s[3] >> 16) ^
(s[4] << 16) ^ (s[4] >> 16) ^ (s[5] << 16) ^ (s[6] << 16) ^
(s[6] >> 16) ^ (s[7] & 0xFFFF0000) ^ (s[7] << 16) ^ (s[7] >> 16);
u[6] = m[6] ^ s[0] ^ (s[1] >> 16) ^ (s[2] << 16) ^ s[3] ^ (s[3] >> 16) ^
(s[4] << 16) ^ (s[4] >> 16) ^ (s[5] << 16) ^ (s[5] >> 16) ^ s[6] ^
(s[6] << 16) ^ (s[6] >> 16) ^ (s[7] << 16);
u[7] = m[7] ^ (s[0] & 0xFFFF0000) ^ (s[0] << 16) ^ (s[1] & 0xFFFF) ^
(s[1] << 16) ^ (s[2] >> 16) ^ (s[3] << 16) ^ s[4] ^ (s[4] >> 16) ^
(s[5] << 16) ^ (s[5] >> 16) ^ (s[6] >> 16) ^ (s[7] & 0xFFFF) ^
(s[7] << 16) ^ (s[7] >> 16);

// 16 * 1 round of the LFSR and XOR in H
v[0] = h[0] ^ (u[1] << 16) ^ (u[0] >> 16);
v[1] = h[1] ^ (u[2] << 16) ^ (u[1] >> 16);
v[2] = h[2] ^ (u[3] << 16) ^ (u[2] >> 16);
v[3] = h[3] ^ (u[4] << 16) ^ (u[3] >> 16);
v[4] = h[4] ^ (u[5] << 16) ^ (u[4] >> 16);
v[5] = h[5] ^ (u[6] << 16) ^ (u[5] >> 16);
v[6] = h[6] ^ (u[7] << 16) ^ (u[6] >> 16);
v[7] = h[7] ^ (u[0] & 0xFFFF0000) ^ (u[0] << 16) ^ (u[7] >> 16) ^
(u[1] & 0xFFFF0000) ^ (u[1] << 16) ^ (u[6] << 16) ^ (u[7] & 0xFFFF0000);

// 61 rounds of LFSR, mixing up h (computed from a product matrix)
h[0] = (v[0] & 0xFFFF0000) ^ (v[0] << 16) ^ (v[0] >> 16) ^ (v[1] >> 16) ^
(v[1] & 0xFFFF0000) ^ (v[2] << 16) ^ (v[3] >> 16) ^ (v[4] << 16) ^
(v[5] >> 16) ^ v[5] ^ (v[6] >> 16) ^ (v[7] << 16) ^ (v[7] >> 16) ^
(v[7] & 0xFFFF);
h[1] = (v[0] << 16) ^ (v[0] >> 16) ^ (v[0] & 0xFFFF0000) ^ (v[1] & 0xFFFF) ^
v[2] ^ (v[2] >> 16) ^ (v[3] << 16) ^ (v[4] >> 16) ^ (v[5] << 16) ^
(v[6] << 16) ^ v[6] ^ (v[7] & 0xFFFF0000) ^ (v[7] >> 16);
h[2] = (v[0] & 0xFFFF) ^ (v[0] << 16) ^ (v[1] << 16) ^ (v[1] >> 16) ^
(v[1] & 0xFFFF0000) ^ (v[2] << 16) ^ (v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^
(v[5] >> 16) ^ v[6] ^ (v[6] >> 16) ^ (v[7] & 0xFFFF) ^ (v[7] << 16) ^
(v[7] >> 16);
h[3] = (v[0] << 16) ^ (v[0] >> 16) ^ (v[0] & 0xFFFF0000) ^
(v[1] & 0xFFFF0000) ^ (v[1] >> 16) ^ (v[2] << 16) ^ (v[2] >> 16) ^ v[2] ^
(v[3] << 16) ^ (v[4] >> 16) ^ v[4] ^ (v[5] << 16) ^ (v[6] << 16) ^
(v[7] & 0xFFFF) ^ (v[7] >> 16);
h[4] = (v[0] >> 16) ^ (v[1] << 16) ^ v[1] ^ (v[2] >> 16) ^ v[2] ^
(v[3] << 16) ^ (v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^ (v[5] >> 16) ^
v[5] ^ (v[6] << 16) ^ (v[6] >> 16) ^ (v[7] << 16);
h[5] = (v[0] << 16) ^ (v[0] & 0xFFFF0000) ^ (v[1] << 16) ^ (v[1] >> 16) ^
(v[1] & 0xFFFF0000) ^ (v[2] << 16) ^ v[2] ^ (v[3] >> 16) ^ v[3] ^
(v[4] << 16) ^ (v[4] >> 16) ^ v[4] ^ (v[5] << 16) ^ (v[6] << 16) ^
(v[6] >> 16) ^ v[6] ^ (v[7] << 16) ^ (v[7] >> 16) ^ (v[7] & 0xFFFF0000);
h[6] = v[0] ^ v[2] ^ (v[2] >> 16) ^ v[3] ^ (v[3] << 16) ^ v[4] ^
(v[4] >> 16) ^ (v[5] << 16) ^ (v[5] >> 16) ^ v[5] ^ (v[6] << 16) ^
(v[6] >> 16) ^ v[6] ^ (v[7] << 16) ^ v[7];
h[7] = v[0] ^ (v[0] >> 16) ^ (v[1] << 16) ^ (v[1] >> 16) ^ (v[2] << 16) ^
(v[3] >> 16) ^ v[3] ^ (v[4] << 16) ^ v[4] ^ (v[5] >> 16) ^ v[5] ^
(v[6] << 16) ^ (v[6] >> 16) ^ (v[7] << 16) ^ v[7];
}

void CGOSTHash::_Bytes(const UWORD8 *pBuf, UWORD32 uBits)
{
INTPREF i, j = 0;
UWORD32 a, c = 0, m[8];

// Convert bytes to 32-bit words and compute the sum
for(i = 0; i < 8; i++)
{
a = ((UWORD32)pBuf[j]) |
(((UWORD32)pBuf[j + 1]) << 8) |
(((UWORD32)pBuf[j + 2]) << 16) |
(((UWORD32)pBuf[j + 3]) << 24);

j += 4;
m[i] = a;

// Bugfix July 23, 2002 mjos@iki.fi. Thanks to Kaluzhinsky Anatoly.
if(c)
{
c = a + m_sum[i] + 1;
m_sum[i] = c;
c = c <= a;
}
else
{
c = a + m_sum[i];
m_sum[i] = c;
c = c < a;
}
}

_Compress(m_hash, m);

// A 64-bit counter should be sufficient
m_len[0] += uBits;
if(m_len[0] < uBits) // Overflowed
m_len[1]++;
}

void CGOSTHash::Update(const UWORD8 *pBuf, UINTPREF uLen)
{
UINTPREF i, j = 0;

i = m_partial_bytes;

while((i < 32) && (j < uLen))
m_partial[i++] = pBuf[j++];

if(i < 32)
{
m_partial_bytes = i;
return;
}
_Bytes(m_partial, 256);

while((j + 32) < uLen)
{
_Bytes(&pBuf[j], 256);
j += 32;
}

i = 0;
while(j < uLen)
m_partial[i++] = pBuf[j++];

m_partial_bytes = i;
}

void CGOSTHash::Final()
{
INTPREF i, j = 0;
UWORD32 a;

if(m_partial_bytes > 0)
{
memset(&m_partial[m_partial_bytes], 0, 32 - m_partial_bytes);
_Bytes(m_partial, m_partial_bytes << 3);
}

_Compress(m_hash, m_len);
_Compress(m_hash, m_sum);

for(i = 0; i < 8; i++)
{
a = m_hash[i];
m_digest[j] = (UWORD8) a;
m_digest[j + 1] = (UWORD8)(a >> 8);
m_digest[j + 2] = (UWORD8)(a >> 16);
m_digest[j + 3] = (UWORD8)(a >> 24);
j += 4;
}
}
(28-28/71)