Project

General

Profile

---------------------------------------------------------------------------
-- (c) 2020 mark watson
-- I am happy for anyone to use this for non-commercial use.
-- If my vhdl files are used commercially or otherwise sold,
-- please contact me for explicit permission at scrameta (gmail).
-- This applies for source and binary form and derived works.
---------------------------------------------------------------------------

LIBRARY ieee;
USE ieee.std_logic_1164.all;
use ieee.numeric_std.all;
USE IEEE.STD_LOGIC_UNSIGNED.ALL;
use IEEE.STD_LOGIC_MISC.all;

LIBRARY work;

ENTITY SID_top IS
GENERIC
(
wave_base: std_logic_vector(16 downto 0)
);
PORT
(
CLK : in std_logic; -- >1MHz, ideally higher for more accurate filter (as long as timing met)
RESET_N : in std_logic;
ENABLE : in std_logic; -- Typically ~1MHz

ADDR : in std_logic_vector(4 downto 0);
READ_ENABLE : in std_logic;
WRITE_ENABLE : in std_logic;

POT_X : in std_logic;
POT_Y : in std_logic;
POT_RESET : out std_logic;
DI : in std_logic_vector(7 downto 0);
DO : out std_logic_vector(7 downto 0);
DRIVE_DO : out std_logic;
AUDIO : out std_logic_vector(15 downto 0);

DEBUG_WV1 : out unsigned(11 downto 0);
DEBUG_EV1 : out unsigned(7 downto 0);
DEBUG_AM1 : out signed(15 downto 0);

sidtype : in std_logic; -- 0=8580 filter, 1=6581 filter
EXT : in std_logic_vector(1 downto 0); -- 00=GND,01=digifix,10=ADC
EXT_ADC : in unsigned(15 downto 0);

rom_addr : out std_logic_vector(16 downto 0);
rom_data : in std_logic_vector(31 downto 0);
rom_request : out std_logic;
rom_ready : in std_logic;

FILTER_BP_OUT : out signed(17 downto 8);
FILTER_HP_OUT : out signed(17 downto 8);
FILTER_F_OUT : out std_logic_vector(12 downto 0);
FILTER_F_BP : in std_logic_vector(12 downto 0);
FILTER_F_HP : in std_logic_vector(12 downto 0)
);
END SID_top;
ARCHITECTURE vhdl OF SID_top IS
-- frequency (added to 24 bit osc on each tick)
signal freq_adj_channel_a_reg : std_logic_vector(15 downto 0);
signal freq_adj_channel_a_next : std_logic_vector(15 downto 0);
signal freq_adj_channel_b_reg : std_logic_vector(15 downto 0);
signal freq_adj_channel_b_next : std_logic_vector(15 downto 0);
signal freq_adj_channel_c_reg : std_logic_vector(15 downto 0);
signal freq_adj_channel_c_next : std_logic_vector(15 downto 0);

-- pulse waveform duty cycle
signal pulse_width_channel_a_reg : std_logic_vector(11 downto 0);
signal pulse_width_channel_a_next : std_logic_vector(11 downto 0);
signal pulse_width_channel_b_reg : std_logic_vector(11 downto 0);
signal pulse_width_channel_b_next : std_logic_vector(11 downto 0);
signal pulse_width_channel_c_reg : std_logic_vector(11 downto 0);
signal pulse_width_channel_c_next : std_logic_vector(11 downto 0);
-- waveform
signal waveselect_a_reg : std_logic_vector(3 downto 0);
signal waveselect_a_next : std_logic_vector(3 downto 0);
signal waveselect_b_reg : std_logic_vector(3 downto 0);
signal waveselect_b_next : std_logic_vector(3 downto 0);
signal waveselect_c_reg : std_logic_vector(3 downto 0);
signal waveselect_c_next : std_logic_vector(3 downto 0);

--ring mod, sync, gate
signal control_a_reg : std_logic_vector(3 downto 0);
signal control_a_next : std_logic_vector(3 downto 0);
signal control_b_reg : std_logic_vector(3 downto 0);
signal control_b_next : std_logic_vector(3 downto 0);
signal control_c_reg : std_logic_vector(3 downto 0);
signal control_c_next : std_logic_vector(3 downto 0);

-- ADSR envelope - attack/decay/sustain/release
signal envelope_attack_a_reg : std_logic_vector(3 downto 0);
signal envelope_attack_a_next : std_logic_vector(3 downto 0);
signal envelope_attack_b_reg : std_logic_vector(3 downto 0);
signal envelope_attack_b_next : std_logic_vector(3 downto 0);
signal envelope_attack_c_reg : std_logic_vector(3 downto 0);
signal envelope_attack_c_next : std_logic_vector(3 downto 0);

signal envelope_decay_a_reg : std_logic_vector(3 downto 0);
signal envelope_decay_a_next : std_logic_vector(3 downto 0);
signal envelope_decay_b_reg : std_logic_vector(3 downto 0);
signal envelope_decay_b_next : std_logic_vector(3 downto 0);
signal envelope_decay_c_reg : std_logic_vector(3 downto 0);
signal envelope_decay_c_next : std_logic_vector(3 downto 0);

signal envelope_sustain_a_reg : std_logic_vector(3 downto 0);
signal envelope_sustain_a_next : std_logic_vector(3 downto 0);
signal envelope_sustain_b_reg : std_logic_vector(3 downto 0);
signal envelope_sustain_b_next : std_logic_vector(3 downto 0);
signal envelope_sustain_c_reg : std_logic_vector(3 downto 0);
signal envelope_sustain_c_next : std_logic_vector(3 downto 0);

signal envelope_release_a_reg : std_logic_vector(3 downto 0);
signal envelope_release_a_next : std_logic_vector(3 downto 0);
signal envelope_release_b_reg : std_logic_vector(3 downto 0);
signal envelope_release_b_next : std_logic_vector(3 downto 0);
signal envelope_release_c_reg : std_logic_vector(3 downto 0);
signal envelope_release_c_next : std_logic_vector(3 downto 0);
-- state variable filter params
signal statevariable_fcutoff_reg : std_logic_vector(10 downto 0); --30Hz to 12KHz, linear (or rather not, read from rom...)
signal statevariable_fcutoff_next : std_logic_vector(10 downto 0);
signal statevariable_F_reg : std_logic_vector(12 downto 0); -- F computed from fcutoff -> or read from ram : 0.21 fixed point
signal statevariable_F_next : std_logic_vector(12 downto 0); -- see example computation at start of filter.vhdl
signal statevariable_f_changed : std_logic;
signal statevariable_f_dirty_next : std_logic;
signal statevariable_f_dirty_reg : std_logic;
signal rom_state_reg : std_logic_vector(2 downto 0);
signal rom_state_next : std_logic_vector(2 downto 0);
constant rom_state_init : std_logic_vector(2 downto 0) := "000";
constant rom_state_romrequest_statevariable_f : std_logic_vector(2 downto 0) := "001";
constant rom_state_romrequest_wave_a : std_logic_vector(2 downto 0) := "010";
constant rom_state_romrequest_wave_b : std_logic_vector(2 downto 0) := "011";
constant rom_state_romrequest_wave_c : std_logic_vector(2 downto 0) := "100";
constant rom_state_romrequest_statevariable_q : std_logic_vector(2 downto 0) := "101";
signal statevariable_q_changed : std_logic;
signal statevariable_q_dirty_next : std_logic;
signal statevariable_q_dirty_reg : std_logic;
signal statevariable_Q_reg : std_logic_vector(3 downto 0); --resonance
signal statevariable_Q_next : std_logic_vector(3 downto 0);
signal statevariable_1q_reg : signed(17 downto 0); --resonance
signal statevariable_1q_next : signed(17 downto 0);

signal rom_addr_mux : std_logic_vector(2 downto 0);
signal rom_data_word : std_logic_vector(15 downto 0);

signal rom_osc : std_logic_vector(10 downto 0);
signal rom_high_word : std_logic;
signal rom_wave_3bit : std_logic_vector(2 downto 0);
signal rom_wave_2bit : std_logic_vector(1 downto 0);

signal wavegen_data_needed : std_logic_vector(2 downto 0);
signal wavegen_data_ready : std_logic_vector(2 downto 0);

-- which channels are filtered?
signal filter_en_reg : std_logic_vector(3 downto 0);
signal filter_en_next : std_logic_vector(3 downto 0);

-- which filters are we using?
signal filter_sel_reg : std_logic_vector(2 downto 0); --hp/bp/lp
signal filter_sel_next : std_logic_vector(2 downto 0);

-- allow ch3 to be silent (direct audio path), if using it for modulation
signal ch3silent_reg : std_logic;
signal ch3silent_next : std_logic;

-- overall volume
signal vol_reg : std_logic_vector(3 downto 0);
signal vol_next : std_logic_vector(3 downto 0);

-- op regs
signal addr_decoded : std_logic_vector(31 downto 0);
signal audio_reg: std_logic_vector(15 downto 0);

-- osc regs
signal osc_a_reg : std_logic_vector(11 downto 0);
signal osc_b_reg : std_logic_vector(11 downto 0);
signal osc_c_reg : std_logic_vector(11 downto 0);
signal osc_a_lfsr_enable : std_logic;
signal osc_b_lfsr_enable : std_logic;
signal osc_c_lfsr_enable : std_logic;
signal sync_a : std_logic;
signal sync_b : std_logic;
signal sync_c : std_logic;
signal osc_a_sync_out : std_logic;
signal osc_b_sync_out : std_logic;
signal osc_c_sync_out : std_logic;
signal osc_a_changing : std_logic;
signal osc_b_changing : std_logic;
signal osc_c_changing : std_logic;

-- wavegen regs
signal wave_a_reg : std_logic_vector(11 downto 0);
signal wave_b_reg : std_logic_vector(11 downto 0);
signal wave_c_reg : std_logic_vector(11 downto 0);

-- envelope regs
signal envelope_a_reg : std_logic_vector(7 downto 0);
signal envelope_b_reg : std_logic_vector(7 downto 0);
signal envelope_c_reg : std_logic_vector(7 downto 0);
signal delay_lfsr_a : std_logic_vector(14 downto 0);
signal delay_lfsr_b : std_logic_vector(14 downto 0);
signal delay_lfsr_c : std_logic_vector(14 downto 0);
signal tapkey_a : std_logic_vector(3 downto 0);
signal tapkey_b : std_logic_vector(3 downto 0);
signal tapkey_c : std_logic_vector(3 downto 0);
signal tapmatches : std_logic_vector(2 downto 0);

-- amplitude modulator
signal channel_a_modulated : signed(15 downto 0);
signal channel_b_modulated : signed(15 downto 0);
signal channel_c_modulated : signed(15 downto 0);
signal channel_d : signed(15 downto 0);

-- prefilter
signal channel_prefilter : signed(15 downto 0);
signal channel_directsum : signed(15 downto 0);

-- filter
signal filter_lp : signed(17 downto 0); -- extra bit due to Jammer causing filter to clip
signal filter_bp : signed(17 downto 0);
signal filter_hp : signed(17 downto 0);

-- paddles
signal potx_reg : std_logic_vector(7 downto 0);
signal potx_next : std_logic_vector(7 downto 0);
signal poty_reg : std_logic_vector(7 downto 0);
signal poty_next : std_logic_vector(7 downto 0);
signal potcount_reg : std_logic_vector(8 downto 0);
signal potcount_next : std_logic_vector(8 downto 0);
signal potread_x_reg : std_logic;
signal potread_y_reg : std_logic;
signal potread_x_next : std_logic;
signal potread_y_next : std_logic;

-- do internal bus
signal do_out_next : std_logic_vector(7 downto 0);
signal do_out_reg : std_logic_vector(7 downto 0);
signal reset_readcount : std_logic;
signal readcount_reg : unsigned(15 downto 0);
signal readcount_next : unsigned(15 downto 0);
BEGIN
process(clk,reset_n)
begin
if (reset_n='0') then
freq_adj_channel_a_reg <= (others=>'0');
freq_adj_channel_b_reg <= (others=>'0');
freq_adj_channel_c_reg <= (others=>'0');
pulse_width_channel_a_reg <= (others=>'0');
pulse_width_channel_b_reg <= (others=>'0');
pulse_width_channel_c_reg <= (others=>'0');
waveselect_a_reg <= (others=>'0');
waveselect_b_reg <= (others=>'0');
waveselect_c_reg <= (others=>'0');
control_a_reg <= (others=>'0');
control_b_reg <= (others=>'0');
control_c_reg <= (others=>'0');
envelope_attack_a_reg <= (others=>'0');
envelope_attack_b_reg <= (others=>'0');
envelope_attack_c_reg <= (others=>'0');
envelope_decay_a_reg <= (others=>'0');
envelope_decay_b_reg <= (others=>'0');
envelope_decay_c_reg <= (others=>'0');
envelope_sustain_a_reg <= (others=>'0');
envelope_sustain_b_reg <= (others=>'0');
envelope_sustain_c_reg <= (others=>'0');
envelope_release_a_reg <= (others=>'0');
envelope_release_b_reg <= (others=>'0');
envelope_release_c_reg <= (others=>'0');
statevariable_fcutoff_reg <= (others=>'0');
statevariable_F_reg <= (others=>'0');
statevariable_Q_reg <= (others=>'0');
statevariable_1q_reg <= (others=>'0');
rom_state_reg <= rom_state_init;
filter_en_reg <= (others=>'0');
filter_sel_reg <= (others=>'0');
ch3silent_reg <= '0';
vol_reg <= (others=>'0');
statevariable_f_dirty_reg <= '1';
statevariable_q_dirty_reg <= '1';
potx_reg <= (others=>'0');
poty_reg <= (others=>'0');
potread_x_reg <= '0';
potread_y_reg <= '0';
potcount_reg <= (others=>'0');
do_out_reg <= (others=>'0');
readcount_reg <= (others=>'0');
elsif (clk'event and clk='1') then
freq_adj_channel_a_reg <= freq_adj_channel_a_next;
freq_adj_channel_b_reg <= freq_adj_channel_b_next;
freq_adj_channel_c_reg <= freq_adj_channel_c_next;
pulse_width_channel_a_reg <= pulse_width_channel_a_next;
pulse_width_channel_b_reg <= pulse_width_channel_b_next;
pulse_width_channel_c_reg <= pulse_width_channel_c_next;
waveselect_a_reg <= waveselect_a_next;
waveselect_b_reg <= waveselect_b_next;
waveselect_c_reg <= waveselect_c_next;
control_a_reg <= control_a_next;
control_b_reg <= control_b_next;
control_c_reg <= control_c_next;
envelope_attack_a_reg <= envelope_attack_a_next;
envelope_attack_b_reg <= envelope_attack_b_next;
envelope_attack_c_reg <= envelope_attack_c_next;
envelope_decay_a_reg <= envelope_decay_a_next;
envelope_decay_b_reg <= envelope_decay_b_next;
envelope_decay_c_reg <= envelope_decay_c_next;
envelope_sustain_a_reg <= envelope_sustain_a_next;
envelope_sustain_b_reg <= envelope_sustain_b_next;
envelope_sustain_c_reg <= envelope_sustain_c_next;
envelope_release_a_reg <= envelope_release_a_next;
envelope_release_b_reg <= envelope_release_b_next;
envelope_release_c_reg <= envelope_release_c_next;
statevariable_fcutoff_reg <= statevariable_fcutoff_next;
statevariable_F_reg <= statevariable_F_next;
statevariable_Q_Reg <= statevariable_Q_next;
statevariable_1q_reg <= statevariable_1q_next;
rom_state_reg <= rom_state_next;
filter_en_reg <= filter_en_next;
filter_sel_reg <= filter_sel_next;
ch3silent_reg <= ch3silent_next;
vol_reg <= vol_next;
statevariable_f_dirty_reg <= statevariable_f_dirty_next;
statevariable_q_dirty_reg <= statevariable_q_dirty_next;
potx_reg <= potx_next;
poty_reg <= poty_next;
potread_x_reg <= potread_x_next;
potread_y_reg <= potread_y_next;
potcount_reg <= potcount_next;
do_out_reg <= do_out_next;
readcount_reg <= readcount_next;
end if;
end process;
decode_addr1 : entity work.complete_address_decoder
generic map(width=>5)
port map (addr_in=>ADDR(4 downto 0), addr_decoded=>addr_decoded);
process(addr_decoded,write_enable,di,
freq_adj_channel_a_reg,
freq_adj_channel_b_reg,
freq_adj_channel_c_reg,
pulse_width_channel_a_reg,
pulse_width_channel_b_reg,
pulse_width_channel_c_reg,
waveselect_a_reg,
waveselect_b_reg,
waveselect_c_reg,
control_a_reg,
control_b_reg,
control_c_reg,
envelope_attack_a_reg,
envelope_attack_b_reg,
envelope_attack_c_reg,
envelope_decay_a_reg,
envelope_decay_b_reg,
envelope_decay_c_reg,
envelope_sustain_a_reg,
envelope_sustain_b_reg,
envelope_sustain_c_reg,
envelope_release_a_reg,
envelope_release_b_reg,
envelope_release_c_reg,
statevariable_fcutoff_reg,
statevariable_Q_Reg,
filter_en_reg,
filter_sel_reg,
ch3silent_reg,
vol_reg
)
begin
freq_adj_channel_a_next <= freq_adj_channel_a_reg;
freq_adj_channel_b_next <= freq_adj_channel_b_reg;
freq_adj_channel_c_next <= freq_adj_channel_c_reg;
pulse_width_channel_a_next <= pulse_width_channel_a_reg;
pulse_width_channel_b_next <= pulse_width_channel_b_reg;
pulse_width_channel_c_next <= pulse_width_channel_c_reg;
waveselect_a_next <= waveselect_a_reg;
waveselect_b_next <= waveselect_b_reg;
waveselect_c_next <= waveselect_c_reg;
control_a_next <= control_a_reg;
control_b_next <= control_b_reg;
control_c_next <= control_c_reg;
envelope_attack_a_next <= envelope_attack_a_reg;
envelope_attack_b_next <= envelope_attack_b_reg;
envelope_attack_c_next <= envelope_attack_c_reg;
envelope_decay_a_next <= envelope_decay_a_reg;
envelope_decay_b_next <= envelope_decay_b_reg;
envelope_decay_c_next <= envelope_decay_c_reg;
envelope_sustain_a_next <= envelope_sustain_a_reg;
envelope_sustain_b_next <= envelope_sustain_b_reg;
envelope_sustain_c_next <= envelope_sustain_c_reg;
envelope_release_a_next <= envelope_release_a_reg;
envelope_release_b_next <= envelope_release_b_reg;
envelope_release_c_next <= envelope_release_c_reg;
statevariable_fcutoff_next <= statevariable_fcutoff_reg;
statevariable_Q_next <= statevariable_Q_reg;
filter_en_next <= filter_en_reg;
filter_sel_next <= filter_sel_reg;
ch3silent_next <= ch3silent_reg;
vol_next <= vol_reg;

statevariable_f_changed <= '0';
statevariable_q_changed <= '0';
if (write_enable='1') then
--ch a
if (addr_decoded(0)='1') then
freq_adj_channel_a_next(7 downto 0) <= di;
end if;
if (addr_decoded(1)='1') then
freq_adj_channel_a_next(15 downto 8) <= di;
end if;
if (addr_decoded(2)='1') then
pulse_width_channel_a_next(7 downto 0) <= di;
end if;
if (addr_decoded(3)='1') then
pulse_width_channel_a_next(11 downto 8) <= di(3 downto 0);
end if;
if (addr_decoded(4)='1') then
control_a_next <= di(3 downto 0);
waveselect_a_next <= di(7 downto 4);
end if;
if (addr_decoded(5)='1') then
envelope_attack_a_next <= di(7 downto 4);
envelope_decay_a_next <= di(3 downto 0);
end if;
if (addr_decoded(6)='1') then
envelope_sustain_a_next <= di(7 downto 4);
envelope_release_a_next <= di(3 downto 0);
end if;

--ch b
if (addr_decoded(7)='1') then
freq_adj_channel_b_next(7 downto 0) <= di;
end if;
if (addr_decoded(8)='1') then
freq_adj_channel_b_next(15 downto 8) <= di;
end if;
if (addr_decoded(9)='1') then
pulse_width_channel_b_next(7 downto 0) <= di;
end if;
if (addr_decoded(10)='1') then
pulse_width_channel_b_next(11 downto 8) <= di(3 downto 0);
end if;
if (addr_decoded(11)='1') then
control_b_next <= di(3 downto 0);
waveselect_b_next <= di(7 downto 4);
end if;
if (addr_decoded(12)='1') then
envelope_attack_b_next <= di(7 downto 4);
envelope_decay_b_next <= di(3 downto 0);
end if;
if (addr_decoded(13)='1') then
envelope_sustain_b_next <= di(7 downto 4);
envelope_release_b_next <= di(3 downto 0);
end if;

--ch c
if (addr_decoded(14)='1') then
freq_adj_channel_c_next(7 downto 0) <= di;
end if;
if (addr_decoded(15)='1') then
freq_adj_channel_c_next(15 downto 8) <= di;
end if;
if (addr_decoded(16)='1') then
pulse_width_channel_c_next(7 downto 0) <= di;
end if;
if (addr_decoded(17)='1') then
pulse_width_channel_c_next(11 downto 8) <= di(3 downto 0);
end if;
if (addr_decoded(18)='1') then
control_c_next <= di(3 downto 0);
waveselect_c_next <= di(7 downto 4);
end if;
if (addr_decoded(19)='1') then
envelope_attack_c_next <= di(7 downto 4);
envelope_decay_c_next <= di(3 downto 0);
end if;
if (addr_decoded(20)='1') then
envelope_sustain_c_next <= di(7 downto 4);
envelope_release_c_next <= di(3 downto 0);
end if;

--filter
if (addr_decoded(21)='1') then
statevariable_fcutoff_next(2 downto 0) <= di(2 downto 0);
statevariable_f_changed <= '1';
end if;
if (addr_decoded(22)='1') then
statevariable_fcutoff_next(10 downto 3) <= di;
statevariable_f_changed <= '1';
end if;
if (addr_decoded(23)='1') then
statevariable_Q_next <= di(7 downto 4);
statevariable_q_changed <= '1';
filter_en_next <= di(3 downto 0);
end if;
if (addr_decoded(24)='1') then
ch3silent_next <= di(7);
filter_sel_next <= di(6 downto 4);
vol_next <= di(3 downto 0);
end if;
end if;
end process;
process(addr,addr_decoded,
do_out_reg,do_out_next,
read_enable,
wave_c_reg,
envelope_c_reg,
potx_reg,
poty_reg,
readcount_reg
)
begin
drive_do <= '1';
--ADDR(4) and ADDR(3) and or_reduce(ADDR(2 downto 0));
do_out_next <= do_out_reg;

reset_readcount <= '0';

if (read_enable='1') then
if (addr_decoded(25)='1') then
do_out_next <= potx_reg;
reset_readcount <= '1';
end if;
if (addr_decoded(26)='1') then
do_out_next <= poty_reg;
reset_readcount <= '1';
end if;
if (addr_decoded(27)='1') then
do_out_next <= wave_c_reg(11 downto 4);
reset_readcount <= '1';
end if;
if (addr_decoded(28)='1') then
do_out_next <= envelope_c_reg;
reset_readcount <= '1';
end if;
else
if (or_reduce(std_logic_vector(readcount_reg))='0') then
do_out_next <= (others=>'0');
end if;
end if;
do <= do_out_next;
end process;

process(readcount_reg,enable,reset_readcount,sidtype)
begin
readcount_next <= readcount_reg;

if (reset_readcount='1') then
if (sidtype ='1') then --6581
readcount_next <=to_unsigned(8000,16);
else
readcount_next <=to_unsigned(65535,16);
end if;
else
if (enable='1') then
readcount_next <=readcount_reg-1;
end if;
end if;
end process;

-- osc a
osc_a : entity work.SID_oscillator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
TEST => control_a_reg(3),
LFSR_ENABLE => osc_a_lfsr_enable,
CHANGING => osc_a_changing,
BITS_OUT => osc_a_reg,

SYNC_IN => sync_a,
SYNC_OUT => osc_a_sync_out,
ADJ => freq_adj_channel_a_reg
);
sync_a <= control_a_reg(1) and osc_c_sync_out;

-- osc b
osc_b : entity work.SID_oscillator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
TEST => control_b_reg(3),
LFSR_ENABLE => osc_b_lfsr_enable,
CHANGING => osc_b_changing,
BITS_OUT => osc_b_reg,

SYNC_IN => sync_b,
SYNC_OUT => osc_b_sync_out,
ADJ => freq_adj_channel_b_reg
);
sync_b <= control_b_reg(1) and osc_a_sync_out;

-- osc c
osc_c : entity work.SID_oscillator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
TEST => control_c_reg(3),
LFSR_ENABLE => osc_c_lfsr_enable,
CHANGING => osc_c_changing,
BITS_OUT => osc_c_reg,

SYNC_IN => sync_c,
SYNC_OUT => osc_c_sync_out,
ADJ => freq_adj_channel_c_reg
);
sync_c <= control_c_reg(1) and osc_b_sync_out;

--wave generator
wavegen_a : entity work.SID_wavegen
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

CHANGING => osc_a_changing,

DELAYSAWTOOTH => not(sidtype),
RINGMOD => control_a_reg(2),
RINGMOD_OSC_MSB => osc_c_reg(11),
TEST => control_a_next(3),
LFSR_ENABLE => (osc_a_lfsr_enable or (control_a_reg(3) xor control_a_next(3)) or (control_a_reg(3) and enable)),
OSC_IN => osc_a_reg,
PULSE_WIDTH_IN => pulse_width_channel_a_reg,

WAVESELECT_IN => waveselect_a_reg,

WAVE_DATA_NEEDED => wavegen_data_needed(0),
WAVE_DATA_READY => wavegen_data_ready(0),
WAVE_DATA => rom_data_word(11 downto 0),

WAVE_OUT => wave_a_reg
);
wavegen_b : entity work.SID_wavegen
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

CHANGING => osc_b_changing,

DELAYSAWTOOTH => not(sidtype),
RINGMOD => control_b_reg(2),
RINGMOD_OSC_MSB => osc_a_reg(11),
TEST => control_b_next(3),
LFSR_ENABLE => (osc_b_lfsr_enable or (control_b_reg(3) xor control_b_next(3)) or (control_b_reg(3) and enable)),
OSC_IN => osc_b_reg,
PULSE_WIDTH_IN => pulse_width_channel_b_reg,

WAVESELECT_IN => waveselect_b_reg,

WAVE_DATA_NEEDED => wavegen_data_needed(1),
WAVE_DATA_READY => wavegen_data_ready(1),
WAVE_DATA => rom_data_word(11 downto 0),

WAVE_OUT => wave_b_reg
);
wavegen_c : entity work.SID_wavegen
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

CHANGING => osc_c_changing,

DELAYSAWTOOTH => not(sidtype),
RINGMOD => control_c_reg(2),
RINGMOD_OSC_MSB => osc_b_reg(11),
TEST => control_c_next(3),
LFSR_ENABLE => (osc_c_lfsr_enable or (control_c_reg(3) xor control_c_next(3)) or (control_c_reg(3) and enable)),
OSC_IN => osc_c_reg,
PULSE_WIDTH_IN => pulse_width_channel_c_reg,

WAVESELECT_IN => waveselect_c_reg,

WAVE_DATA_NEEDED => wavegen_data_needed(2),
WAVE_DATA_READY => wavegen_data_ready(2),
WAVE_DATA => rom_data_word(11 downto 0),

WAVE_OUT => wave_c_reg
);

-- envelope
envelope_a : entity work.SID_envelope
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

TAPMATCH => tapmatches(0),

ATTACK => envelope_attack_a_reg,
SUSTAIN => envelope_sustain_a_reg,
DECAY => envelope_decay_a_reg,
RELEASE_IN => envelope_release_a_reg,

GATE => control_a_reg(0),
ENVELOPE => envelope_a_reg,
DELAY_LFSR => delay_lfsr_a,
TAPKEY => tapkey_a
);

envelope_b : entity work.SID_envelope
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

TAPMATCH => tapmatches(1),

ATTACK => envelope_attack_b_reg,
SUSTAIN => envelope_sustain_b_reg,
DECAY => envelope_decay_b_reg,
RELEASE_IN => envelope_release_b_reg,

GATE => control_b_reg(0),
ENVELOPE => envelope_b_reg,
DELAY_LFSR => delay_lfsr_b,
TAPKEY => tapkey_b
);

envelope_c : entity work.SID_envelope
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

TAPMATCH => tapmatches(2),

ATTACK => envelope_attack_c_reg,
SUSTAIN => envelope_sustain_c_reg,
DECAY => envelope_decay_c_reg,
RELEASE_IN => envelope_release_c_reg,

GATE => control_c_reg(0),
ENVELOPE => envelope_c_reg,
DELAY_LFSR => delay_lfsr_c,
TAPKEY => tapkey_c
);

envelope_tapmatcher : entity work.SID_envelope_tapmatch
PORT MAP
(
CLK => clk,
RESET_N => reset_n,

DELAY_LFSR1 => delay_lfsr_a,
DELAY_LFSR2 => delay_lfsr_b,
DELAY_LFSR3 => delay_lfsr_c,

TAPKEY1 => tapkey_a,
TAPKEY2 => tapkey_b,
TAPKEY3 => tapkey_c,

TAPMATCHES => tapmatches
);

-- volume
vol_a : entity work.SID_amplitudeModulator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
WAVE => wave_a_reg,
ENVELOPE => envelope_a_reg,
MODULATED => channel_a_modulated
);

vol_b : entity work.SID_amplitudeModulator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
WAVE => wave_b_reg,
ENVELOPE => envelope_b_reg,
MODULATED => channel_b_modulated
);

vol_c : entity work.SID_amplitudeModulator
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,
WAVE => wave_c_reg,
ENVELOPE => envelope_c_reg,
MODULATED => channel_c_modulated
);

prefilter: entity work.SID_preFilterSum
PORT MAP
(
CLK => clk,
RESET_N => reset_n,
ENABLE => enable,

BIAS_CHANNEL => sidtype,

CHANNEL_A => channel_a_modulated,
CHANNEL_B => channel_b_modulated,
CHANNEL_C => channel_c_modulated,
CHANNEL_C_CUTDIRECT => ch3silent_reg,
CHANNEL_D => channel_d,
FILTER_EN => filter_en_reg,

PREFILTER_OUT => channel_prefilter,
DIRECT_OUT => channel_directsum
);

process(statevariable_F_reg, statevariable_1q_reg,
rom_state_reg,
statevariable_f_changed, statevariable_f_dirty_reg,
statevariable_q_changed, statevariable_q_dirty_reg,
rom_data, rom_data_word, rom_high_word, rom_ready,
wavegen_data_needed)
begin
statevariable_f_dirty_next <= statevariable_f_dirty_reg or statevariable_f_changed;
statevariable_F_next <= statevariable_F_reg;
statevariable_q_dirty_next <= statevariable_q_dirty_reg or statevariable_q_changed;
statevariable_1q_next <= statevariable_1q_reg;
rom_state_next <= rom_state_reg;
rom_request <= '0';

rom_addr_mux <= "000";
wavegen_data_ready <= (others=>'0');

if (rom_high_word='0') then
rom_data_word <= rom_data(15 downto 0);
else
rom_data_word <= rom_data(31 downto 16);
end if;

case rom_state_reg is
when rom_state_init =>
if (statevariable_f_dirty_reg='1') then
rom_state_next <= rom_state_romrequest_statevariable_f;
end if;
if (statevariable_q_dirty_reg='1') then
rom_state_next <= rom_state_romrequest_statevariable_q;
end if;
if (wavegen_data_needed(0)='1') then
rom_state_next <= rom_state_romrequest_wave_a;
end if;
if (wavegen_data_needed(1)='1') then
rom_state_next <= rom_state_romrequest_wave_b;
end if;
if (wavegen_data_needed(2)='1') then
rom_state_next <= rom_state_romrequest_wave_c;
end if;
when rom_state_romrequest_statevariable_f =>
rom_request <= '1';
rom_addr_mux <= "000";
if (rom_ready = '1') then
statevariable_f_dirty_next <= '0';
statevariable_F_next <= rom_data_word(12 downto 0);
rom_state_next <= rom_state_init;
end if;
when rom_state_romrequest_wave_a =>
rom_request <= '1';
rom_addr_mux <= "001";
wavegen_data_ready(0) <= rom_ready;
if (rom_ready = '1') then
rom_state_next <= rom_state_init;
end if;
when rom_state_romrequest_wave_b =>
rom_request <= '1';
rom_addr_mux <= "010";
wavegen_data_ready(1) <= rom_ready;
if (rom_ready = '1') then
rom_state_next <= rom_state_init;
end if;
when rom_state_romrequest_wave_c =>
rom_request <= '1';
rom_addr_mux <= "011";
wavegen_data_ready(2) <= rom_ready;
if (rom_ready = '1') then
rom_state_next <= rom_state_init;
end if;
when rom_state_romrequest_statevariable_q =>
rom_request <= '1';
rom_addr_mux <= "100";
if (rom_ready = '1') then
statevariable_q_dirty_next <= '0';
statevariable_1q_next <= signed(rom_data(17 downto 0));
rom_state_next <= rom_state_init;
end if;
when others =>
rom_state_next <= rom_state_init;
end case;
end process;

process(rom_addr_mux,
sidtype,
statevariable_fcutoff_reg,
statevariable_q_reg,
osc_a_reg,osc_b_reg,osc_c_reg,
waveselect_a_reg,waveselect_b_reg,waveselect_c_reg,
rom_wave_2bit,rom_wave_3bit,
rom_osc,rom_high_word)

variable rom_wave_addr: std_logic_vector(16 downto 0);
variable sidtype2: std_logic_vector(0 downto 0);
begin
rom_addr <= (others=>'0');
rom_high_word <= '0';
rom_wave_2bit <= (others=>'0');
rom_wave_3bit <= (others=>'0');
rom_osc <= (others=>'0');

sidtype2(0) := sidtype;

case rom_wave_3bit is
when "011" => -- ST
rom_wave_2bit <= "00";
when "101" => --P T
rom_wave_2bit <= "01";
when "110" => --PS
rom_wave_2bit <= "10";
when "111" => --PST
rom_wave_2bit <= "11";
when others =>
end case;

rom_wave_addr := std_logic_vector(unsigned(wave_base)+resize(unsigned(sidtype2(0 downto 0)&rom_wave_2bit&rom_osc),17)); --1:2:11

case rom_addr_mux is
when "000" =>
rom_addr <= "00000"&std_logic_vector(unsigned('0'&sidtype2(0 downto 0))+1)&statevariable_fcutoff_reg(10 downto 1);
rom_high_word <= statevariable_fcutoff_reg(0);
when "001" =>
rom_osc <= osc_a_reg(11 downto 1);
rom_wave_3bit <= waveselect_a_reg(2 downto 0);
rom_addr <= rom_wave_addr;
rom_high_word <= osc_a_reg(0);
when "010" =>
rom_osc <= osc_b_reg(11 downto 1);
rom_wave_3bit <= waveselect_b_reg(2 downto 0);
rom_addr <= rom_wave_addr;
rom_high_word <= osc_b_reg(0);
when "011" =>
rom_osc <= osc_c_reg(11 downto 1);
rom_wave_3bit <= waveselect_c_reg(2 downto 0);
rom_addr <= rom_wave_addr;
rom_high_word <= osc_c_reg(0);
when "100" =>
rom_addr <= "000000010000"&sidtype2(0 downto 0)&statevariable_q_reg;
when others =>
end case;

end process;

variable_state_filter : entity work.SID_filter
PORT MAP
(
CLK => clk,
RESET_N => reset_n,

INPUT => channel_prefilter,

SIDTYPE => sidtype,

LOWPASS => filter_lp,
BANDPASS => filter_bp,
HIGHPASS => filter_hp,

--CUTOFF_FREQUENCY => statevariable_fcutoff_reg,
F_BP => unsigned(filter_f_bp),
F_HP => unsigned(filter_f_hp),
Q => statevariable_1q_reg
);

postfilter: entity work.SID_postFilterSum
PORT MAP
(
CLK => clk,
RESET_N => reset_n,

DIRECT => channel_directsum,

FILTER_LP => filter_lp,
FILTER_BP => filter_bp,
FILTER_HP => filter_hp,
FILTER_SEL => filter_sel_reg,

VOLUME => vol_reg,

CHANNEL_OUT => audio_reg
);

-- paddles
process (potx_reg,poty_reg,pot_x,pot_y,potcount_reg,enable,potread_x_reg,potread_y_reg)
begin
potx_next <= potx_reg;
poty_next <= poty_reg;
potread_x_next <= potread_x_reg and not(potcount_reg(8));
potread_y_next <= potread_y_reg and not(potcount_reg(8));
potcount_next <= potcount_reg;

pot_reset <= potcount_reg(8);
if (enable='1') then
potcount_next <= std_logic_vector(unsigned(potcount_reg)+1);
if ((pot_x='1' or potcount_reg="011111111") and potread_x_reg='0') then
potx_next <= potcount_reg(7 downto 0);
potread_x_next <= '1';
end if;
if ((pot_y='1' or potcount_reg="011111111") and potread_y_reg='0') then
poty_next <= potcount_reg(7 downto 0);
potread_y_next <= '1';
end if;
end if;

end process;

-- ext audio
process(ext_adc,ext)
begin
--EXT : in std_logic_vector(1 downto 0); -- 00=GND,01=digifix,10=ADC
--EXT_ADC : in unsigned(7 downto 0);
channel_d <= to_signed(0,16);

case EXT is
when "01" =>
channel_d <= signed("000"&ext&"00000000000");
when "10" =>
channel_d <= signed(not(ext_adc(15))&ext_adc(14 downto 0));
when others=>
end case;
end process;
--------------------------------
-- TODO
-- 1) DONE:check above works!
-- 2) DONE: wave combinations need to read flash
-- 3) DONE:envelope/gate
-- 4) DONE:amplitude modulation
-- 5) DONE:filter on/off
-- 5) DONE:filter (state variable as per info found)
-- 6) DONE:volume
-- 7) DONE: read registers: pot, osc3 etc
-- 8) 6581! buggy_variable_state_filter : entity work.SID_filter
-- ref: https://bel.fi/alankila/c64-sw/index-cpp.html
-- see distortion section
--------------------------------
--outputs
AUDIO <= audio_reg;

DEBUG_EV1 <= unsigned(envelope_a_reg);
DEBUG_WV1 <= unsigned(wave_a_reg);
DEBUG_AM1 <= channel_a_modulated;

FILTER_BP_OUT <= filter_bp(17 downto 8);
FILTER_HP_OUT <= filter_hp(17 downto 8);
FILTER_F_OUT <= statevariable_F_reg;

end vhdl;

(11-11/12)