
Master of Science in Electronics
June 2011
Kjetil Svarstad, IET
Ove Brynestad, Tandberg/Cisco

Submission date:
Supervisor:
Co-supervisor:

Norwegian University of Science and Technology
Department of Electronics and Telecommunications

Efficient video scaling algorithms
implemented and optimized for FPGA.

Svein Erik Lindø

NORGES TEKNISK-NATURVITENSKAPELIGE
UNIVERSITET

"Efficient video scaling algorithms
implemented and optimized for FPGA"

Master Thesis
SVEIN ERIK LINDØ

SUBMISSION DATE: JUNE 13. 2011

SUPERVISORS:

KJETIL SVARSTAD, NTNU
OVE BRYNESTAD, CISCO

iii

Problem Description

A theoretical foundation is presented and discussed in a pre-project as algorithms and basic im-
plementations.

Based on previous theory, this master thesis aims to find more efficient methods for imple-
menting filter structures for use in scaling. We also wish to investigate potential benefits and
optimizations by using dynamically reconfigurable FPGA. The improved or new implementa-
tions should be compared to the implementation most commonly used today, the FIR-filter based
Polyphase implementation.

Efficiency is measured in both hardware area requirements and throughput performance. The
implemented design is aimed for real-time video scaling in teleconferencing systems, with close
to natural image content.

Assignment given: 17. January 2011
Supervisor (NTNU): Kjetil Svarstad
Supervisor (Cisco): Ove Brynestad

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

v

Summary

The goal of this thesis was to find an alternative to a reference video scaler, providing the same
or higher visual quality at faster operation, requiring less FPGA area and memory.

The first part of the report is used to lay a theoretical foundation within the field of video and
image scalers. It is shown how the problem of video scaling is equivalent to the problem of
discrete signal resampling in signal theory, and therefore also bound by the sampling theorem.
The report explains why the the sinc function is the ideal interpolation kernel for signal recon-
struction, and how the windowed sinc function is utilized in video/image scaling applications.

Three different video scaler algorithms Winscale, Edgeprocessor and Polyphasic FIR-filter
Lanczos2 has been purposed. All algorithms are explained in theory and system architectures
are suggested. Through visual quality tests based on matlab models, were the conclusion drawn
that Winscale provides varying, non-predictable lower visual quality compared to the reference
scaler and is not a suitable alternative. The adaptive Edgeprocessor shows potential as lower
complexity alternatives providing better visual quality through the use of basic edge-detection
and more complex calculations than Winscale. FIR-filter Lanczos2 is still seen as the better
choice of implementation, as both Winscale and Edgeprocessor depends on a prescaler when
downscaling below scale factor 0.5.

Configurable IP-core scalers from Altera has also been suggested, providing equal visual qual-
ity at maximum frequency requiring less FPGA resources. This solution would not provide full
customizability and debug properties, as the source-code is not provided. The IP-cores can be
configured with the most common interpolation kernels (Nearest, Bilinear, Bicubic, Polyphase).

The use of dynamic reconfigurable FPGAs in video scaling applications are shortly discussed,
as the research provided only a limited amount of literature and examples within this specific
field. My own thoughts and ideas on how reconfigurability may be utilized are presented.

Allthough no actual implementation of the described algorithms and system architectures is
done, the thesis lays a theoretical foundation for future implementation of the three purposed
scaler architectures.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

vii

Acknowledgments

This master thesis has been performed in the spring of 2011 at NTNU Trondheim and at Cisco
at Lysaker. I want to give a special thanks to my two supervisors, Ove Brynestad at Cisco and
Kjetil Svarstad at NTNU, for providing good guidance throughout the work on this master thesis.

-
June 13, 2011
Svein Erik Lindø

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

Contents ix

Contents

1. Introduction 1
1.1. Video scaling in videoconferencing . 1
1.2. FPGA vs ASIC implementation . 1
1.3. Relationship between Pre-Project Report and Master Thesis 1
1.4. Report Outline . 2

2. Basics of video scaling 3
2.1. Scaling as an geometric operation . 3
2.2. Pixel Models . 5

3. Interpolation 7
3.1. Sampling Theorem . 7
3.2. Ideal Interpolation . 8
3.3. Nearest-neighbor Interpolation . 10
3.4. Linear Interpolation . 10
3.5. Cubic Interpolation . 12
3.6. Spline Interpolation . 13
3.7. Lanczos Interpolation . 14

4. Video Quality and Scaling Artifacts 16

5. FIR-filter Image Scaling 19
5.1. Integer Upscaling Factors . 19
5.2. Rational Up- and Downscaling Factors . 20
5.3. Linear Interpolation as FIR filter . 21
5.4. Higher order interpolation in FIR filter implementation 23

6. Cisco Reference Scaler 26

7. Winscale 27
7.1. Algorithm . 27
7.2. Implementation Statistics . 28
7.3. Hardware Architecture . 28
7.4. Winscale Summary . 31

8. Egde-Oriented Image Scaling Processor 32
8.1. Algorithm . 32

8.1.1. Approximation - Appr[] . 33
8.1.2. Edge-Catching . 36

8.2. Hardware Architecture . 38
8.3. Simulation and implementation . 40

9. Evaluating Winscale and Edgeprocessor 42
9.1. My Matlab Model Comparisons . 42

10.Video Scaling IP Cores 53

11.Dynamically Reconfigurable FPGA 55

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

x Contents

12.Conclusion and future work 56

A. Matlab source code 57
A.1. windowgeneration.m . 57
A.2. coefficients.m . 58
A.3. winscale_top.m . 58
A.4. winscale_getDelta.m . 64
A.5. winscale_4pix.m . 64

References 67

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

1. Introduction

Resizing or scaling of video is performed in a wide variety of electronics. The scaling is
done to enlarge or reduce video dimensions to screen-size or even as a method of lossy video-
compression. As with any lossy-compression method, scaling may induce noise or distortion
of the information in the image. It is very important to reduce such scaling-induced noise in
critical applications, such as military and medical applications. Loss of crucial information in
these applications could have serious consequences. In handheld devices, such as smart-phones
and tablet PCs, effective scaling-algorithms with low complexity have to take battery usage into
account. Too complex calculations could seriously reduce battery lifetime. If the handheld
device is used for visual video communications, video scaling could be performed to keep trans-
mission within bandwidth limits. As HDTVs are becoming public domain, the entertainment
industry uses video scaling to produce high quality transfers of old movies, which where not
produced with the current display-resolutions in mind. This report will focus on video scaling
in professional videoconferencing applications.

1.1. Video scaling in videoconferencing

Different video scalers are being utilized throughout the video transmission chain in a video-
conferencing system. The sensor in the camera may capture a too high resolution video stream.
Downscaling the video adapts the video stream for a bandwidth limited video processing sys-
tem. Downscaling or upscaling at the receiver- or display-end may solve mismatches between
video dimension and display resolution. Other applications may be producing compositions of
multiple video streams or graphics.

Cisco [Cis11] challenged me in conducting a survey of existing video scaling algorithms,
and compare them with a reference design provided by them. The goal of the master thesis
would be to determine whether there exists a video scaling algorithm and implementation, pro-
viding higher visual quality compared to their reference design. Alternatively, scalers providing
same visual quality at reduced hardware requirements could be explored. The scaler should be
capable of both upscaling and downscaling with arbitrary rational scaling-factors. Aspect ra-
tio should not necessarily be kept; vertical and horizontal scaling-factors is not necessarily the
same. Computation time is very important to keep low, as videoconferencing systems contains
strict real-time requirements. Delays in video processing will in the worst case result in the user
experiencing the pace of communication as un-natural.

Figure 1 displays a generalization of how the video scaling problem applies to a videoconfer-
encing system and one of the many applications video scalers are being utilized.

1.2. FPGA vs ASIC implementation

When implementing systems on ASICs and FPGAs, we are able to exploit pipelining and mas-
sively parallel processing. FPGAs gives us a flexible tool for rapid prototyping when developing
digital processing circuits. The circuits are reprogrammable and dynamic reconfigurable, which
provide opportunity for development and improvement of firmware after products are sold and
shipped, or even in operation. ASICs could be an alternative choice of technology if the require-
ment of reprogrammability had been left out and the production volume were very high.

1.3. Relationship between Pre-Project Report and Master Thesis

As preparation for the master thesis, a pre-project were carried out with the goal of laying a
theoretical foundation within interpolation and it’s relationship to image and video scaling al-

2 1. Introduction

Figure 1: Basic videoconference setup

gorithms. My contribution to the pre-project was an overview and comparison of traditional and
new experimental algorithms used in these applications, optimized and implemented on FPGA.

The pre-project and master thesis will have some common content, since the pre-project were
aimed to lay the theoretical foundation. Instead of frequent referring to the pre-project, the most
relevant theory has been included in this report. This applies to some of the theory in Section
2 - 5. The master thesis should be seen as an extension and an enhancement of the pre-project
report, where some mistakes have been corrected, some concepts have been expanded and new
ones have been added.

1.4. My contribution

My contribution to this master thesis has been to conduct a survey of already existing theory,
algorithms and implementations. Due to time-limitations have analysis, evaluation of relevance
and comparison of visual quality and resource requirements been performed based on scientific
literature, tests results from own Matlab simulations and implementation documentation.

1.5. Report Outline

The report first presents the basics and definitions of video scaling in Section 2. In Section 3 are
the concept and mathematics of signal interpolation explained. The traditional scaling kernels
and algorithms are described and compared to the more complex kernels. Video quality and
artifacts associated with scaling is presented in Section 4. The most widespread scaler based on
the Lanczos2 Polyphase FIR Filter, is derived in Section 5. The implementation statistics of a
reference scaler provided by Cisco i shown in Section 6.Two area-pixel based algorithms and
implementations, Winscale and Edgeprocessor, is shown in Section 7 and 8. The visual quality
and implementation requirements of these algorithms are compared to the reference scaler in
Section 9 before FPGA manufacturer Altera’s own IP-core solutions are shown in Section 10.
Dynamical reconfigurability is shortly discussed in Section 11 before conclusions are drawn and
future work discussed in Section 12.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

2. Basics of video scaling 3

2. Basics of video scaling

A video/image scaler reduces or increases the resolution size of a image or a frame in a video
sequence. As a video-sequence basically is a sequence of images, we do not distinguish between
video and image scalers. If the scaler have to perform scaling on a video-stream encoded with
coding (such as MPEG), we could not use the algorithms and implementations described in this
report without performing decoding of the video first. Within the process of scaling, the scaler
has to decide which pixels to keep from the original source image, and which pixels have to
be recreated through mathematical calculations. The source image has the dimension Xs · Ys,
and the destination image Xd · Yd. From these notations, we can define the scaling factors as
Equation 1 and 2.

Sx =
Xd

Xs
(1)

Sy =
Yd
Ys

(2)

There are two types of scaling: pixel replication and pixel interpolation. Pixel Replication, also
known as zero order interpolation, replicates the pixels n times, thereby n-doubling the image in
size. For the simplest implementation this results in poor image quality and very strong blocking
or aliasing artifacts. This method is the oldest, but is still used in many systems because of its
simplicity in hardware implementation. It only requires a linestore, a few registers for storing
pixels, two multiplexing circuits and a simple control (for implementation details, see [Ber03]
page 19.

Pixel Interpolation uses an image-processing filter, which calculates the intermediate pixel
values with the use of mathematical interpolation models. These algorithms provides a much
smoother scaled image, compared to pixel replication. Such models will be discussed in Section
3.

2.1. Scaling as an geometric operation

A geometric operation on an image transforms the given image I into a new image I ′ by mod-
ifying the coordinates of the image pixels (Equation 3). In transforming the image, a mapping
function (Equation 4) is needed. The mapping function specifies the target pixel x′ = (x′, y′) in
the new image I ′ for each of the original pixels x = (x, y) in the original image.

I(x, y)→ I ′(x′, y′) (3)

x′ = T (x) (4)

The pixels in the image is defined on a discrete raster, rather than a continuous plane, because of
the display’s finite resolution. This leads to more strict requirements for the mapping function, in
that the only valid resulting pixels from the function may be discrete values on the raster plane.
This can be accomplished in two ways, in which differ by the mapping direction; Source-to-
Target and Target-to-Source

Source-to-Target

In the Source-to-Target approach the mapping function compute, for every pixel (u, v) in the
original source image I , the corresponding transformed position (x′, y′) in the new image I ′. In

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

4 2. Basics of video scaling

other words, the mapping function has to decide in which pixel in the target image I ′ the color
intensity value from the original pixel I(u, v) should be stored or even which several pixels it
should be distributed amongst.

(x′, y′) = T (u, v) (5)

The challenge with this approach is that some of the elements in the target image I ′ may never
get assigned a value, depending on the geometric transformation T (Equation 5). This may result
in areas or "holes" in the target image without assigned values. A very low-complex example
is shown in Figure 2. The algorithm in this example calculates the target pixels in a for-every-
pixel-in-source fashion. Since the mapping function is rather unintelligent, only selected target
pixels get assigned a value. Such an algorithm grows more complex, if equal distribution of
pixel intensities is to be ensured. For this reason, the source-to-target is not the ideal approach.

Figure 2: The simplest Source-to-target method

Target-to-Source

The Target-to-Source method takes the opposite approach, where for every discrete pixel po-
sition (u′, v′) in the target image I ′, it computes the corresponding continuous pixel position
(x,y) in the source image plane, using the inverse geometric transformation T−1 (Equation (6)).
The coordinate (x, y) does not necessarily fall onto a raster point, so the method have to decide
from which neighboring source pixel to extract the resulting pixel values. This method solves
Source-to-Target’s "hole"-problem, but we have to be careful in designing such methods such
that all relevant information in the source image is taken in account. We will later see how edge
sharpness may suffer from this approach.

(x, y) = T−1(u′, v′) (6)

Figure 3: Target-to-source

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

2.2. Pixel Models 5

2.2. Pixel Models

It is important to define how the pixels are modeled, as the mathematical problem of image
scaling gets defined. This report uses two different models called the Point Pixel Model and the
Area Pixel Model.

Point pixel model

The point pixel model treats each pixel as a point with a finite placement on a two-dimensional
raster. The image scaling is simply a resampling of the two-dimensional function on a new
sampling grid. Figure 4 shows the scaling problem in one dimension, where the green pixel is the
interpolated pixel used in the target image. The intermediate intensity values can be calculated
with the presented interpolation kernels in Section 3. This pixel model is closely connected to
the mathematics and statistics of digital/discrete signal theory, which is a well established field
of research.

Figure 4: Pixel point model

Area pixel model

Instead of treating each pixel as a point, the area pixel model treats each pixel as a rectangle
with the intensity evenly distributed throughout the rectangle. The scaling problem therefore
becomes the problem of calculating the size of each overlapping region of the target pixel and
each source pixel (shown in Figure 5). The relative size of each overlapping region corresponds
to the coefficients in the scaling filter.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

6 2. Basics of video scaling

(a) Upscaling: Target pixel is
smaller than source pixel

(b) Downscaling: Target pixel is
larger than source pixel

Figure 5: Area pixel model

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

3. Interpolation 7

3. Interpolation

This section explains how the problem of image scaling can be solved by the concept of two di-
mensional signal interpolation. We first show how ideal interpolation is derived from the signal
sampling theory. Then several different interpolation kernels are presented.

[MB10] defines interpolation as "the process of estimating the intermediate values of a sam-
pled function or a signal at continuous positions or the attempt to reconstruct the original con-
tinuous function from a set of discrete samples". Our goal by interpolation, is ultimately to
obtain an estimate for the value of the two-dimensional image function I(x,y) at any continuous
position (x,y). We should preserve as much detail as possible without visible artifacts such as
ringing or moiré patterns (Explained in Section 4).

The interpolation algorithms can be divided into the two catergories adaptive and non-adaptive.
The non adaptive algorithms treat all pixels equal, and are in that way simpler to implement.
Nearest Neighbor, bilinear, bicubic, Spline and Lanczos are some non-adaptive algorithms.

The adaptive algorithms change functionality and settings based on the what information is
interpolated. These algorithms often detect edges and compensates for this while processing the
information. According to [Cam10] are most of these algorithms proprietary algorithms used in
licensed software like Qimage[Qim10], PhotoZoom Pro ([Ben10]) and Genuine Fractals[oS10],
although an open adaptive algorithm used in the Edgeprocessor is presented in Section 8.

3.1. Sampling Theorem

To fully understand the concept of interpolation, we need to know the basics of sampling and
the Sampling Theorem. Sampling is the process of converting a continuous function f(x) into a
discrete signal f [n]. This is done by extracting values at regular intervals, shown in Equation 7.
A important feature when sampling, is to construct the discrete signal in such a way that the
original continuos signal could be perfectly reconstructed. The sampling theorem (Equation 8)
states that in order to keep the property of perfect reconstruction; the continuos signal must be
sampled at a sampling frequency ωs, at least twice the frequency of the maximum frequency
component ωmax.

f [n] =

∞∑
k=−∞

f(kT) (7)

ωs ≥ 2 · ωmax (8)

Figure 6 shows the relationships between the continuos signal and the discrete signal in both
time and frequency domain. When discretized with a sampling frequency ωmax, the frequency
responseXP (ω) will be exact replicas of the frequency responseX(ω) with period ωmax (Figure
6(d)). A lower sampling frequency would result in overlapping of the replicas in the frequency
domain (shown in Figure 6(e)). This artifact would make it impossible to reproduce the original
continuous signal from the discrete signal. More information on the sampling theorem can be
found in [Ber03].

The process of interpolation is actually the process of resampling a signal by trying to repro-
duce the original signal and resample it at a higher sampling rate. In reproducing this signal, we
have to we isolate the frequency range [−ωmax, ωmax] in the frequency spectrum (Figure 6(d)).
This is done by filtering the signal with a ideal low-pass filter given in the frequency domain by
Equation (9).

Ππ(ω) =

{
1 for −π ≤ ω ≤ π
0 otherwise

(9)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8 3. Interpolation

(a) Continuos signal in time domain (b) Discretized signal in time domain

(c) Continuos signal in frequency domain (d) Discretized signal in frequency domain

(e) Aliased signal in frequency domain

Figure 6: The Sampling Theorem

The inverse Fourier Transform of the ideal low-pass filter corresponds to the Sinc function
(Equation (10)) in the time domain. This is the ideal interpolation function for reconstructing a
frequency-limited continuous signal.

Sinc(x) =

{
1 for |x| = 0
sin(πx)
πx for |x| > 0

(10)

The continuous signal f(x) can be perfectly reconstructed from Equation 11. The process is
shown visually in Figure 7.

x(t) =

∞∑
k=−∞

x(kT)Sinc(
t− kT
T

) (11)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

3.2. Ideal Interpolation 9

Figure 7: Ideal Interpolation [MB10]

3.2. Ideal Interpolation

In our application of image scaling, we use the concept of interpolation to calculate the value for
a discrete function g(u) at an arbitrary position x0, a position where the discrete image function
does not provide any valid values. The Sinc function is therefor centered around x0, multiplied
with all sample values of g(u) and then summed (Equation 12, convolution).

ĝ(x0) = Sinc ∗ g =
∞∑

u=−∞
Sinc(x0 − u)g(u) (12)

The ideal interpolation is defined in 2 dimensions as the 2D Sinc function in Equation 13 and
Figure 8. A challenge in using the Sinc function occurs around high-frequency signal events,
such as rapid transitions or pulses (containing infinite large frequency components), where it
causes strong overshooting or "ringing" artifacts. These artifacts may be reduced by doing a
lowpass filtering first. An example of such ringing artifacts is shown in shown in Figure 9. The
original continuous signal contained a sharp object, like a hair or a line in some clothing. When
the original image were tried to be reconstructed from the perfect Sinc interpolation (Equation
12), it resulted in smoother edges with actually higher amplitudes in some regions. This would
visually result in wrong pixel intensity values in part of the image, and could in worst case be
perceived as quality-degrading. This proves that the ideal interpolation based on the infinite
Sinc-function is not perfect. The design of the optimal interpolation kernel is always a tradeoff
between high bandwidth (sharpness) and good transient response (low ringing effects).

SINCx, y = Sincx · Sincy =
sin(πx)

πx
· sin(πy)

πy
(13)

The Sinc function has also an infinite extend. For practical applications is the Sinc therefore
not suitable as an interpolation kernel. In the next sections, we’ll therefore present some in-
terpolation kernels which approximates the Sinc function. These methods all cope with the
extent-problem by windowing the approximation or the sampled version of the Sinc function
within a finite interval.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

10 3. Interpolation

Figure 8: Ideal Interpolation 2D [MB10]

Figure 9: "Ringing" effects in high frequency areas caused by Sinc based interpolation

3.3. Nearest-neighbor Interpolation

The simplest way of interpolation is called nearest-neighbor interpolation. This method rounds
up the continuous coordinate x to the closest integer u0 and use the sample g(u0) as the estimated
function value in Equation (14). The Nearest-neighbor Kernel is given by Equation (15)

ĝ(x) = g(u0)

u0 = round(x) = |x+ 0.5|
(14)

ωnn(x) =

{
1 for −0.5 ≤ x ≤ 0.5
0 otherwise

(15)

Nearest-neighbor in 2D

In the 2D case, the pixel closest to a given continuous point (x0, y0) is found by rounding the
x and the y coordinates independently to integer values in Equation (16). The 2D kernel of the
nearest-neighbor interpolation is defined as Equation (17). A visual representation of the 1D
and 2D kernel is shown in Figure 10(b) and Figure 10(c). This method is rarely used because of
its blocking effects on the reconstructed signal. An example of such effects is shown in Figure
10(a).

Î(x0, y0) = I(u0, v0)

u0 = round(x0) = bx0 + 0.5c
v0 = round(y0) = by0 + 0.5c

(16)

Wnn(x, y) =

{
1 for − 0.5 ≤ x, y < 0.5

0 otherwise
(17)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

3.4. Linear Interpolation 11

(a) Example (b) 1D Kernel (c) 2D Kernel [MB10]

Figure 10: Nearest-neighbor Interpolation

3.4. Linear Interpolation

As nearest neighbor produces very blocky images, the need for some smoothening of the edges
arrises. Linear interpolation estimates the intermediate value ĝ(x) as the sum of the two closest
samples g(u0) and g(u0 + 1), where u0 = |x| (Equation (18)). The weight of each sample is
proportional to its closeness to the continuous position x. This provides much smoother transi-
tions between the existing samples in our example in Figure 11(a). The Linear Kernel is given
by Equation (19).

ĝ(x) = g(u0) + (x− u0)(g(u0 + 1)− g(u0)) (18)

ωlin(x) =

{
1− x for |x| < 1
0 for |x| ≥ 1

(19)

(a) Example (b) 1D Kernel (c) 2D Kernel [MB10]

Figure 11: Linear Interpolation

[zip09] suggests that the linear kernel could be modified with what is called successive smooth-
ing, which is implemented by raising the kernel near zero and lowering it more near the end.
Figure 12 shows two examples of such smoothening. We can clearly see from this illustration
that added complexity of this kernel with successive smoothening, would have the shape of the
sinc-based kernels.

Bilinear Interpolation in 2D

In the two-dimensional space, the linear interpolation is called Bilinear Interpolation. For the
given interpolation point (x0, y0) we first find the four closest pixels A, B, C, D in the image I
defined by Equation (20).

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

12 3. Interpolation

Figure 12: Successive Smoothing

A = I(u0, v0)

B = I(u0 + 1, v0)

C = I(u0, v0 + 1)

D = I(u0 + 1, v0 + 1)

u0 = bx0c
v0 = by0c

(20)

The distance from these pixels determines the weighing of the different pixel values. The
calculations needed is defined in Equation (21) and summarized as the linear convolution filter
kernel in Equation (22) and Figure 11(c).

Horizontal:

a = (x0 − u0)
E = A+ (x0 − u0)(B −A)

F = C + (x0 − u0)(D − C)

Vertical:

b = (y0 − v0)
Î(x0, y0) = E + (y0, v0)(F − E)

Î(x0, y0) = (a− 1)(b− 1)A+ a(1− b)B + (1− a)bC + abD

(21)

Wbil(x, y) = win(x) + wlin(y)

Wbil(x, y) =

{
1− x− y − x · y for 0 ≤ |x|, |y| < 1

0 otherwise

(22)

3.5. Cubic Interpolation

Cubic Interpolation is an approximation of the Sinc function and defined as the piecewise poly-
nomial in Equation (23). The control parameter a adjusts the slope of the Spline function, which
affects the amount of overshoot and perceived "sharpness" of the interpolated signal. Compared
to the Sinc function, the cubic interpolation kernel has a very small extent and is therefor efficient
to compute.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

3.6. Spline Interpolation 13

• a = 1 is often the recommended standard setting

• a = 0.5 is called a Catmull-Rom Spline, and gives better results than a = 1, particulary
in smooth regions

ωcub(x, a) =


(−a+ 2)|x|3 + (a− 3)|x|2 + 1 for 0 ≤ |x| < 1

−a|x|3 + 5a|x|2 − 8a|x|+ 4a for 1 ≤ |x| < 2

0 for |x| ≥ 2

(23)

Figure 13: Cubic Interpolation Kernel

3.6. Spline Interpolation

Another more general approximation of the Sinc function is called Spline interpolation (Figure
14).

ωcs(x, a, b) =


(−6a− 9b+ 12)|x|3 + (−6a+ 12b− 18)|x|2 − 2b+ 6 for 0 ≤ |x| < 1

(−6a− b)|x|3 + (30a+ 6b)|x|2 + (−48a− 12b)|x|+ 24a+ 8b for 1 ≤ |x| < 2

0 for |x| ≥ 2
(24)

• ωcs(x, a, 0) is equal to the Cubic Interpolation

• ωcs(x, 0.5, 0) is called Catmull-Rom Interpolation. This method emphasizes high sharp-
ness and provides good performance in smooth signal regions.

• ωcs(x, 0, 1) is called Cubic B-spline Approximation. The approximation does not go
through all points, but creates no ringing effects.

• ωcs(x, 13 ,
1
3) is called Mitchell-Netravali Approximation. This method is a weighted

sum of Catmull and Cubic B-Spline. It provides less overshoot, high edge sharpness and
good signal continuity in smooth signal regions.

Detailed polynomial for each function can be found in [MB10].

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

14 3. Interpolation

Figure 14: Examples of Spline Interpolation functions

Bicubic and Spline Interpolation in 2D

The Bicubic and Spline 2D interpolation kernels are defined in Equation (25) by the 1D ker-
nels. The interpolated value Î(x0, y0) can be calculated using Equations (26). These equations
is based on a 4x4 neighborhood of pixels where pj denotes the intermediate result for the cubic
interpolation in the horizontal direction in line j. This example requires 20 additions and multi-
plications (16 + 4). [MB10](p.233) presents a pseudocode for the General Spline Interpolation.

Wbic(x, y) = wcub(x) · wcub(y) (25)

Î(x0, y0) =

by0c+2∑
v=by0c−1

[

bx0c+2∑
v=bx0c−1

[I(u, v) ·Wbic(x0 − u, y0 − v)]]

Î(x0, y0) =

3∑
j=0

[wcub(y0 − vj) ·
3∑
i=0

[I(ui, vj) · wcub(x0 − ui)]]

pj =
3∑
i=0

[I(ui, vj) · wcub(x0 − ui)]

ui = bx0c − 1 + i

vj = by0c − 1 + j

(26)

3.7. Lanczos Interpolation

The Lanzos Interpolation (Equation (27)) method utilizes the actual Sinc function combined
with a suitable windowing function ψ(x). Equation (28) defines the Lanczos window function,
where n denotes the order of the filter. The most commonly used orders are 2 and 3. Lanczos
interpolation requires trigonometric functions, which are relative costly to compute. They are
for this reason sampled, and stored in memory in the implemented architecture, rather than
computed on-the-fly. Another alternative is computation in software processors with accurate
trigonometric functions.

ω(x) = ψ(x) · Sinc(x) (27)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

3.7. Lanczos Interpolation 15

ψLn(x) =


1 for |x| = 0
sin(π x

n
)

π x
n

for 0 ≤ |x| < n

0 for |x| ≥ n
(28)

(a) 2nd Order Lanczos Function (b) 3rd Order Lanczos Function

(c) 2nd Order Lanczos Kernel (d) 3rd Order Lanczos Kernel

Figure 15: Lanczos Interpolation

Lanczos Interpolation in 2D

Equation (29) is the general equation for a 2D Lanczos Interpolator of order n. The L3 (n=3)
Lanczos interpolation in 2D uses the support of 6x6 = 36 pixels, 20 more than bicubic inter-
polation. It is important to include enough pixels when scaling down, to ensure that all relevant
information is transferred to the target image.

Î(x0, y0) =

by0c+n∑
v=by0c−n+1

[

bx0c+n∑
v=bx0c−n+1

[I(u, v) ·WLn(x0 − u, y0 − v)]]

Î(x0, y0) =
2n−1∑
j=0

[wLn(y0 − vj) ·
2n−1∑
i=0

[I(ui, vj) · wLn(x0 − ui)]]

ui = bx0c − n+ 1 + i

vj = by0c − n+ 1 + j

(29)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

16 4. Video Quality and Scaling Artifacts

4. Video Quality and Scaling Artifacts

To make good quality comparisons between the different video scaler implementations, it is im-
portant to have knowledge of what artifacts and picture distortions we could expect. These
concepts will be very important when the algorithms are implemented. They are presented now
as they may already help us to distinguish between the algorithms.

Video quality is subjective and cannot be measured accurately as a measurable number. Since
we essentially construct information, we cannot draw adequate visual quality measures by com-
paring the statistics and mathematics of the source and target images. The most common way of
measuring image quality is to look for known types of artifacts that might have appeared during
the scaling process. This is still a manual and subjective approach.

There are several types of artifacts associated with non-adaptive scaling algorithms. These
artifacts will degrade the perceptual quality of the image frame. [Cam10] describes three such
artifacts; Edge Halo, Blurring and Aliasing (Figure 16). The resulting image will always contain
a combination of these artifacts, as they are closely connected. Suppressing one of them comes
at the expense of the other two. [Cam10] presents a diagram (Figure 17) in which they place
different scaling algorithms according to their artifact susceptibility. The diagram shows how
there is a tradeoff between the artifact types. (Algorithms 3,5 and 7 will not be described in this
report). The nearest neighbor is most aliased, and along with bilinear, these two are the only two
that have no edge haloing. The edge sharpness gradually increases from 3-5, but at the expense
of both increased aliasing and edge halos. Lanczos and bicubic are most often used since they
perform better than the other algorithms with reference to these artifacts. They are however
more complex in implementation compared to nearest neighbor and bilinear.

1. Nearest Neighbor

2. Bilinear

3. Bicubic Smoother

4. Bicubic Sharper

5. Bicubic

6. Lanczos

7. Bilinear w/blur

(a) Aliasing (b) Blurring Edge (c) Edge Halo

Figure 16: Scaling Artifacts [Cam10]

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

4. Video Quality and Scaling Artifacts 17

Figure 17: Artifact Trade-offs [Cam10]

Anti-Aliasing

Anti-aliasing is the process of reducing or/and minimizing the amount of aliased or "jagged"
diagonal edges. The edges may be smoothened by calculating how much an ideal edge overlaps
the actual pixel-area. From this it can be determined how much of the pixel value should be
taken in account. Figure 18(c) shows how the edge becomes more smooth by assigning a more
gradient distribution of color values to the edge. The challenge in using this method, is to find
a trade-off between the extremely jagged edge, and the blurry, unshaped edge. This may vary
between applications and image sources.

(a) Ideal Edge (b) Aliased Edge (c) Anti-Aliased Edge

Figure 18: Anti-Aliasing

Moiré Artifacts

Another aliasing artifact, when downsizing an image, is called moiré (shown in Figure 19(b)).
This effect comes to display in images containing fine grained repeating pattern textures. After
downsizing such an image, the size of details in the texture may be below the new lower pixel
size resulting in only selective records of the repeating pattern. Images with fine geometric pat-
terns, such as roof tiles, distant bricks and line texture in a suit, are at high risk of generating this
artifact. In these cases, It may often be useful to simulate the blurry properties the human sight
has, when observing objects at a distance. Interpolation algorithms that preserve best sharpness
are more susceptible to moiré, where as those that avoid moiré typically produce a softer result.

Several simple, but good interactive demonstrations on artifact appearance and anti-aliasing
can be found at [Cam10].

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

18 4. Video Quality and Scaling Artifacts

(a) Source Image

(b) Downsized Image with moiré

Figure 19: Moiré Artifacts

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

5. FIR-filter Image Scaling 19

5. FIR-filter Image Scaling

The most common way of implementing a digital scaling filter, is by using a FIR filter. Such a
scaler will be presented in the following section.

Years of research and experience has led the industry to believe that the best video scalers are
implemented as finite impulse response (FIR) filter structures (Figure 20). The filter is charac-
terized by its filter transfer function H(z) (Equation 30) or its impulse response response h[n]
(Equation 31), which the input signal x[n] is convoluted by, to produce the output signal y[n] (by
Equation (32)). In this case x[n] is the original signal extended by inserting zero-value pixels in
between the original pixels. By sending this signal through the filter, all target pixel are based
on source pixels.

Figure 20: FIR filter structure

H(z) =

N∑
n=0

bnz
−n (30)

h[n] =

N∑
i=0

biδ[n− i] (31)

y[n] =
∑
k

x[n+ k]h[−k] (32)

A common mistake when talking about upsampling processes using FIR filters, is calling the
filters for polyphase filters. If an ordinary FIR filter is used to process a signal with inserted
zero-values prepared for upsampling, and the multiplications by zeroes is removed, the imple-
mentation is polyphasic.

The straight forward way to implement a n-phase filter, is to implement n discrete filters and
route the input pixels to the needed filter. This creates large overhead, since each filter contains
several multiplications and additions. Instead we implement a single filter where coefficients
are multiplexed from memory, using the phase as the selector. The general design is shown in
Figure 21. The number of phases a filter is split into depends only on the upsampling factor.
Each phase consists of several coefficients called taps. In other words, taps is the number of
neighboring pixels the new pixel is dependent on.

5.1. Integer Upscaling Factors

To scale a signal by an integer factor of m, where m is a positive integer, m-1 zeroes are inserted
between all samples and a low pass filter is used to remove the mirrored spectra generated by the
insertion of zeroes. The filter is divided into m phases, shown in Figure 22, while the hardware
architecture for a filter with three taps per phase is shown in Figure 23. The filter generates m
output samples for a given set of input samples. The output sequence y[n] is collected from

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

20 5. FIR-filter Image Scaling

Figure 21: A N-phase, M-tap polyphase FIR filter architecture

the filter by "rotating" between the phases with a frequency of m. From Figure 23 we see that
we require two linestores in addition to registers to make three pixels available in the vertical
direction. Each pixel also requires its own phase in multiplication.

Figure 22: A generalization of a FIR filter divided into different phases

Figure 23: Hardware Architecture of a filter with three taps per phase

5.2. Rational Up- and Downscaling Factors

A rather easy way to obtain scaling with a rational factorm/n (where both are positive integers),
is first to upsample the signal with a factor of m, then downsample it with a factor n. The
downsampling process is the easiest, as it only requires extracting every nth pixel. Following
this, we see from Figure 24 that a lot of redundant calculated pixel values are discarded during
the downsampling. Every pixel value from a redundant calculation is highlighted in yellow. To
make the overall scaling-process more effective, it is crucial that these redundant calculations
are not performed. Our goal for the upsampling process is therefore to calculate only pixel
values for which is needed in the downsampling process. From the illustration we observe that
the extracted pixels are numbered 0, 4, 3, 2, 1... To select which calculations to preform, a
algorithm using modulo 5 is used, since modulo 5 of 0, 4, 8, 12 and 16 is 0, 4, 3, 2, 1. As scaling
factors increase in precision, the process requires increasingly larger amount of phases. As an
example would a scalingfactor of 1000/1009 require as much as 1009 phases. To solve this
challenge, it becomes necessary to perform some approxmiations. Figure 25 shows an example
of a non-uniform sampling with a maximum deviation of 1/8. From this, we see that a filter with

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

5.3. Linear Interpolation as FIR filter 21

Figure 24: Upsampling of 5/4. Calculation of yellow pixels are redundant, as they are discarded.

4 phases will have a maximal deviation of 1/8 from the ideal pixel position. [Ber03] claims that

Figure 25: An approximation is needed as rational factors gets more precise

low-quality systems require 4 bits of precision when representing phase shift, while high-quality
systems require 8 bits. Experiments show that filters with 7 bit precision and 64 phases is enough
([Ber03]). The maximal error would then be 1/128. This can all be summed up in the following
algorithm.

1. Insert 63 zeroes between all consecutive input samples.

2. Calculate the position of a desired output sample.

3. Take the closest neighbor of that sample among the intermediate layer upsampled by 64.

4. Calculate through digital filtering the closest neighbor.

5. Output the calculated sample

5.3. Linear Interpolation as FIR filter

In the case of linear interpolation (Section 3.4) Equation (18) can be written as Equation (33)
where α = x − u0 and k = x. This equation is written in a form that is easy to transform into
filter structures, shown in Figure 27. This implementation requires

• 2 multiplication

• 2 additions

• 1 linestore

• 2 registers

y[k] = α(x[n+ 1]− x[n]) + n (33)

We assume that the filter we use has 64 taps. In other words: new samples can be placed
at 63 different positions between two already existing samples. With a coefficient precision

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

22 5. FIR-filter Image Scaling

of 8 bits, phases are given as shown in Table 1. In other words, the digital filter is given by
h[] = {0, 4, 8, ..., 252, 256, 252, ..., 4}. Each of the coefficients can be found by reading out the
value of the kernel at tap0 and tap1 in Figure 26. For each phase-shift the curve is shifted right
by 1/64. The coefficients are in other words samples of the linear kernel at intervals 1/64.

Figure 26: 64-phase 2tap sampling of linear kernel

Table 1: 64 tap Linear Interpolation with 8 bit precession

Phase Tap 1 Tap 2

phase 0 256 0
phase 1 252 4
phase 2 248 8

...
...

...
phase 63 4 252

Phase Tap 1 Tap 2

phase 0 h[64] h[0]
phase 1 h[65] h[1]
phase 2 h[66] h[2]

...
...

...
phase 63 h[127] h[63]

Figure 27: A FIR filter implementation of the 2D bilinear interpolation

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

5.4. Higher order interpolation in FIR filter implementation 23

Exploiting Phase Symmetry

In applications where coefficients are not generated at run-time but stored in memory, it is im-
portant to realize that the symmetry in the filter phases can lead to reduction of memory require-
ments. In our example of linear interpolation, phase 0 and 32 is unique, but all other phases
appear in "flipped pairs" as an result for symmetry. As an example phase 1 is a flipped version
of phase 63. Following this, we can reduce the required storage requirements by 33/64 with the
help of some additional mapping logic. Table 1 could be shortened to Table 2.

Table 2: Simplified version of Table 1 based on kernel symmetry

Phase Tap 1 Tap 2

phase 0 256 0
phase 1 252 4
phase 2 248 8

...
...

...
phase 32 128 128

Phase Tap 1 Tap 2

phase 0 h[32] h[0]
phase 1 h[33] h[1]
phase 2 h[34] h[2]

...
...

...
phase 32 h[65] h[32]

Order of operations

In scaling-processes where each direction is individually processed, the order of which direction
is scaled can be crucial to the quality of the result. The pixel values will be stored with limited
precision after each step, which implies an introduction of error. This error could potentially be
amplified through the next step in the process. [Ber03] places the stage which introduces the
most error, as close to the end of the processing chain as possible. So if horizontal rescaling
introduces larger error than vertical rescaling, then this stage should be placed near or at the end.

5.4. Higher order interpolation in FIR filter implementation

Section 3.1 showed us that the ideal interpolation FIR filter was a lowpass filter based on the
sinc-function in the time-domain. [Ber03] gives the following algorithm to compute all taps in
such a filter.

1. Assign P to the number of phases and T to the number of taps per phase.

2. Sample P · T samples from the sinc(πtP) function by sampling it at integer values sym-
metrical to the origin. The last sample will have no symmetry.

3. Multiply the samples with a chosen window with the same amount of samples.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

24 5. FIR-filter Image Scaling

4. Split them into T phases

5. Assign the number of k bits of coefficient precision and multiply each phase by P · 2k

6. Assign each tap to the closest integer and check that the sum of each phase is 2k

7. If the sum is not 2k, then modify some of the taps such that the sum becomes 2k

This algorithm can also be shown visually (as we did with the linear kernel) in Figure 28. In this
case we calculate coefficients for a 5-tap 16-phase polyphase FIR filter based on the windowed
sinc function.

Figure 28: Coefficient generation for a 5-tap 15-phase sinc-based interpolation FIR filter

These computations can either be calculated at run-time by a processor or precalculated before
hardware implementation and stored in a shared memory. MATLAB supports filter-generation
with the command Coeff = fir1(193, 1/64, ´Hamming´). It should be mentioned that if the
number of taps per phase is even, phase 0 will be aligned with an existing input sample, and in
the case of odd number of phases, phase 0 will fall exactly in the middle of two existing phases.
[Ber03] recommends selecting odd number of taps, even if an even number is needed. This is
done because of the symmetry of the sinc() function. The last tap is just ignored to obtain an
even number of taps.

It is difficult to say that a windowing function is better than the next, because this varies
between applications. [zip09] recommend designers to experiment with different windows for
their application to decide which window gives best performance. The Lanczos2-windowed
sinc (discussed in Section 3.7) is often used and known to give good performance. Other known
windows are Hamming, Kaiser and Blackman, shown in Figure 29. [zip09] has developed a
Matlab script for generating windowing functions and a script to calculate coefficients for the
Lanczos2-windowed sinc function with 5 taps and 16 phases per tap. These scripts can be found
in Appendix B.1 and B.2.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

5.4. Higher order interpolation in FIR filter implementation 25

(a) Lanczos2 window (b) Hamming window

(c) Kaiser window (d) Blackman window

Figure 29: Commonly used windowing functions

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

26 6. Cisco Reference Scaler

6. Cisco Reference Scaler

Cisco has provided a reference scaler used today in their hardware solutions. The scaler was
given as a functional runnable Matlab model. Although the algorithm of choice cannot be given,
typical resource requirements and maximum performance are given in Table 3. This implemen-
tation does not include coefficient calculations, as these are performed in software by a processor
and stored in a shared memory.

Table 3: Typical resource requirements and performance
FPGA Altera CycloneIII EP3C120F780C7
Logic Cells 2019
Dedicated Logic Registers 1426
Memory Bits 81920
M9Ks 10
DSP Elements 8
DSP 9x9 8
LUT-Only LCs 559
Register-Only LCs 303
LUT/Register LCs 1157
Max Frequency 162.73MHz

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

7. Winscale 27

7. Winscale

The simplest form of area-pixel based algorithm and architecture is presented in this section. A
MATLAB model is coded and placed in Appendix B.3 - B.5

7.1. Algorithm

[CHK03] utilizes the area pixel model presented in Section 2.2 in designing the Winscale algo-
rithm. The horizontal scale ratio (HSR) may be different from the vertical scale ratio (V SR).
For upscaling the scale ratio (SR) is above 1.0 and below 1.0 for downscaling and the scaling is
performed line by line in the Target-to-Source manner (Section 2.1).

Upscaling

In the case of upscaling the target pixel may overlap one, two or maximum four source pixels
according to the pixel area model. The pixel intensity of these pixels are defined by C0-C3
and the area of each source pixel is 1.0. All the boundary coordinates of the 2x2 source pix-
els can be calculated from the pixel width/height and the boundary coordinate (C0BX , C0BY).
(C0BX , C0BY) is initially set to (0, 0) as we scale according to the direction of the streaming
video data: line by line, left to right and top to bottom.

The sum of the overlapping regions is called the filter window and is defined in size of area by
A0-A3. winW and winH are the window height and width and is only dependent on scale ratio
according to Equation 34). (winX,winY) and (PBX , PBY) is the window’s center coordinate
and upper left corner coordinate.

winW =
1

HSR

winH =
1

V SR

SR =
1

winW · winH
=

1

filter window area

(34)

dL and dT are the width and height of the overlapping area of C0 and is defined by Equation 35
.

dL = (C0BX + 1)− PBX
dT = (C0BY + 1)− PBY

(35)

These parameters are used in calculation of A0-A3 (Equation 36).

A0 = dL · dT
A1 = dL · (winH − dT)

A2 = (winW − dL) · dT
A3 = (winW − dL) · (winH − dT)

(36)

The relationship between all these parameters is shown in Figure 30 and the pixel intensity of
the target pixel can be calculated by Equation 37.

P = SR · (A0 · C0 +A1 · C1 +A2 · C2 +A3 · C3) (37)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

28 7. Winscale

Figure 30: Parameter definitions when upscaling with Winscale

Downscaling

When downscaling with a factor bigger than two, the target pixel will overlap a bigger area
than a 2x2 source pixel area. As the Winscale algorithm only operates on a maximum of 2x2
source pixels, it is therefor necessary to prescale the image with a simpler algorithm. [CHK03]
purposes a prescaler which performs an evenly weighted summation with two’s power ratio to
prescale the image and reduce the downscaling factor between 1 and 1/2.

7.2. Implementation Statistics

Both [CHK03] and [CcL07] have each done their own implementation of the Winscale algo-
rithm; [CHK03] on an FPGA and [CcL07] on an ASIC. [CcL07] uses Table 4 to compare the
two. It is not fair to compare the two, as the FPGA implementation includes the prescaler and
the ASIC does not.

Table 4: Implementation details for Winscale
Author [CHK03] [CcL07]

Technology Unknown FPGA UMC 1P6M 0.18 µm (ASIC)
Line Buffer 1 1
Gate Count 29 000 17 414

Max Frequency 64 MHz 130.24 MHz

7.3. Hardware Architecture

[CcL07] purposes the following hardware architecture for implementation of the Winscale Al-
gorithm. The prescaler is left out of the architecture depicted in Figure 31 as we assume that if
needed, pre-scaling already have been perform in a former pipelined step. The system architec-
ture presented here, is therefore only utilized for scaling factors between +∞ and 0.5.

Coordinate Accumulator

The coordinate accumulator calculates the coordinates of the window, or in other words, the
coordinates (next_i, next_j) of the next target pixel to be calculated. Calculations are done

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

7.3. Hardware Architecture 29

Figure 31: Winscale Hardware Architecture

with a simple add and accumulate process; by adding the window width (winW) or height
(winH) with every horizontal or vertical movement. Equation 38 is realized by the structure
shown in Figure 32.

next_j(0) = 0

next_j(m+ 1) = next_j(m) + winH for m = 0,1,2,...

next_i(0) = 0

next_i(n+ 1) = next_i(n) + winW for n = 0,1,2,...

(38)

Figure 32: Coordinate Accumulator

Figure 33: Coordinate column and row definitions

Pixel Orientation Unit

The pixel orientation unit calculates which source pixels the window overlaps. These are the
four source pixels the new target pixel should be based on in its intensity calculations. Boundary

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

30 7. Winscale

coordinates of the window are determined according by Equation 39 and source pixel rows and
columns by ceiling and floor functions in Equation 40. These parameters are used either to
address a memory containing all the pixel intensities or as control signals to a linestore memory
containing parts of a streaming image.

upper_border = PBY

under_border = PBY + winH

left_border = PBX

right_border = PBX + winW

(39)

upper_row = bupper_borderc+ 1

under_row = dunder_bordere
left_col = bleft_borderc+ 1

right_col = d right_bordere

(40)

Figure 34: Pixel Orientation Unit

Area Calculation Unit

The area calculation unit calculates how much overlap the window has in each of the four source
pixels. A challenge arises in upscaling with the target pixel being smaller than a source pixel
and the target pixel only overlaps one source pixel. In some of these cases, dL and dT may be
calculated larger than winW and winH resulting in larger area weights than the actual overlap.
dL and dT should therefor be limited to a maximum of winW and winH (Equation 41). Overlap
areas (Equation 36) are calculated by the structure in Figure 35.

dL = min[upper_row − next_i, winW]

dT = min[left_row − next_j, winH]
(41)

Multiplication-Addition Unit

The multiplication-addition unit (Figure 36) is the actual scaling filter, calculating the new target
pixel intensity (Equation 37) based on the window overlap and the four source pixel intensities.
If we have a full overlap of a source pixel (dT = winH and dL = winW) will the module
assign the intensity of the Pixel0 to the new pixel.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

7.4. Winscale Summary 31

Figure 35: Area Calculation Unit

Figure 36: Multiplication-Addition Unit

7.4. Winscale Summary

[CcL07] claims that the Winscale method has a good high frequency response characteristics
and better image quality than the bilinear method. It preserves edge characteristics of an image
well, can handle streaming data directly and requires only a small amount of memory.

The Winscale algorithm is said to have Nearest Neighbor properties (good high frequency
response and blur reduction) when the target pixel only overlaps one of the source pixel, and
linear properties (blurring is added to avoid aliasing) when it overlaps multiple pixels.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

32 8. Egde-Oriented Image Scaling Processor

8. Egde-Oriented Image Scaling Processor

A area-pixel based, edge-aware algorithm named Edgeprocessor is described in the following
section. The mathematics of the algorithm is described in such detail that future coding of a mat-
lab model or implementation on an FPGA would be done easily. An architecture is described
and implementation statistics from the referred implementation is presented.

[PYC09] purposes an algorithm and a hardware architecture in the article "VLSI Implemen-
tation of an Edge-Oriented Image Scaling Processor". The algorithm is not mentioned by a
specific name in the article, so we will call it the edge processor algorithm. It’s in many ways
very similar to the Winscale algortihm, in that both use a area pixel model rather than the point
pixel model. The edge processor can be viewed as a further developed and more complex win-
scale algorithm and implementation. The main difference between the Winscale algorithm and
the edgeprocessor algorithm is that the edgeprocessor performs a simple edge detection and
utilize the results to preserve a good edge/high-frequency response.

8.1. Algorithm

It is first necessary to define some new variables and rename other variables already known form
Winscale. The target image is a SW × SH pixel image fed to the scaler in a row by row order,
with the upper left pixel as the first to arrive in each frame. Each source pixel is treated as a
rectangle of height and width (sh, sw). The target image has the resolution TW × TH where
pixel height and width still are defined as (winH,winW). The coordinates of the current target
pixel being calculated is (k, l). mf_w = TW

SW and mf_h = TH
SH defines the horizontal and

vertical magnification factor. All these parameters are shown in Figure 37

Figure 37: Source and target pixel definitions

The edge processor calculates the intensity F̂T (k, l) of the new target pixel (k, l) similar to
the Winscale algorithm, by a weighted average of the 2x2 source pixel intensities. Winscale’s
Equation 37 is rewritten as Equation 42

F̂T (k, l) =

1∑
i=0

1∑
j=0

FS(m+ i, n+ j) ·W (m+ i, n+ j) (42)

where FS(m,n) and W (m,n) defines the pixel intensity and the weight factors of source pixel
(m,n). The weighting factors corresponds to the portion of the total window area (Asum) each
of the overlapping areas accounts for. The areas are given by Equation 44 and shown in Figure

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8.1. Algorithm 33

38. The weighting factors are given by Equation 43.

Asum = A(m,n) +A(m+ 1, n) +A(m,n+ 1) +A(m+ 1, n+ 1)

Asum = winW · winH

W (m+ i, n+ j) =
A(m+ i, n+ j)

Asum

(43)

A(m,n) = left(k, l) · top(k, l)
A(m+ 1, n) = right(k, l) · top(k, l)
A(m,n+ 1) = left(k, l) · bottom(k, l)

A(m+ 1, n+ 1) = right(k, l) · bottom(k, l)

(44)

Figure 38: Edge Processor window overlap areas

8.1.1. Approximation - Appr[]

Implementation of the area-pixel model could potentially result in lots of floating point oper-
ations. Those operations often becomes the most complex and expensive modules to realize
in these kind of designs. Instead [PYC09] proposes to use a approximation method Appr[], to
limit the bit-width or precision of these calculations. The approximated lengths (6-bit int) of the
regions are thereby defined by Equation 45 and the approximated size of the overlapping areas
defined by Equation 46.

left′(k, l) = Appr[left(k, l)]

right′(k, l) = Appr[right(k, l)]

top′(k, l) = Appr[top(k, l)]

bottom′(k, l) = Appr[bottom(k, l)]

(45)

A′(m,n) = left′(k, l) · top′(k, l)
A′(m+ 1, n) = right′(k, l) · top′(k, l)
A′(m,n+ 1) = left′(k, l) · bottom′(k, l)

A′(m+ 1, n+ 1) = right′(k, l) · bottom′(k, l)

(46)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

34 8. Egde-Oriented Image Scaling Processor

Figure 39: Window parameters definitions

Filter Window Parameters

The target pixel is defined as a grid with dimensions dependent on the magnification factors
mfw according to Equation 47. winH can be calculated in the same way by changing mf_w to
mf_h. This results in reduction of complexity in computing Equation 43, from a full division
operator to a simple shift operator.

winW =



↑
2n−2 for 25% ≤ mf_w < 50%

2n−1 for 50% ≤ mf_w < 100%

2n for 100% ≤ mf_w < 200%

2n+1 for 200% ≤ mf_w < 400%

↓

(47)

The variables left′(k, l) and top′(k, l) corresponds to Winscale’s definition of dL and dT and
is defined as Equation 48. As shown in Figure 40 are left′(k, l) and top′(k, l) dependent on
whether the overlap is partial or full. The maximal values are (winW,winH) at full overlap.

left′(k, l) = min[srcright(m,n)− winleft, winW]

top′(k, l) = min[srcbtm(m,n)− wintop, winW]
(48)

winleft and winright corresponds to next_i and next_j definitions in Winscale, although
initial values are different. Winscale aligned upper left corner of the first source and target
pixel, while Edgeprocessor aligns the centers of the same pixels. Window corner coordinates
(win_left, win_top) are therefor calculated by Equation 49.

winleft(0, 0) =
sw − winW

2
winleft(k, l) = winleft(k − 1, l) + winW

wintop(0, 0) =
sh − winH

2
wintop(k, l) = wintop(k, l − 1) + winH

(49)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8.1. Algorithm 35

(a) Partial Overlap (b) Full Overlap

Figure 40: Window overlap

Compensation of rounding error in (sw, sh) calculations

The source pixel width and height (sw, sh) are dependent on source and target image resolutions
(Equation 50). Since (sw, sh) are rounded to closest integer, a rounding error is introduced. To
visualize the effect of the error, two examples will be shown. In the first example a source image
(8x8) is upscaled to a target image (11x11). When upper left corner pixels are aligned at centers
and sw is rounded down to 11 according to 50, Figure 41(a) show that right corner pixels don’t
align at centers. Some of the target pixels need a negative offset (to the left). The opposite can
be observed as an second example where a source image 8x8 is upscaled to the target image
(13x13). Since sw is rounded up to 14, some of the pixels need a positive offset (to the right).
Which pixels and how much offset is not known at this point.

sw = round

[
TW − 1

SW − 1
· 2n
]

sh = round

[
TH − 1

SH − 1
· 2n
] (50)

(a) Example 1: Upscaling 8x8→ 11x11

(b) Example 2: Upscaling 8x8→ 13x13

Figure 41: Rounding Error

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

36 8. Egde-Oriented Image Scaling Processor

To compensate for the error a τw or τh is added when calculating the center coordinates of the
2x2 source pixel cluster (srcright, srcbtm) (Equation 51).

srcright(0, 0) = sw

srcright(m,n) = srcright(m− 1, n) + sw + τw

srcbtm(0, 0) = sh

srcbtm(m,n) = srcbtm(m,n− 1) + sh + τh

(51)

τw and τh are determined according to two different modes; normal mode and regulating mode.
If the distance between the source and target center (far right) is less than 1, then the processor
is in normal mode, and τw is set to zero. The processor enters regulating mode if the distance
between the pixel centers are more than 1. In this mode will the processor shift the window
position (top′(k, l) and top′(k, l)) by setting τw to either -1 (compensating for rounding down
error) or 1 (compensating for rounding up error) for some of the pixels along the row. The
number of pixels to be regulated are rw (Equation 52). rw = 3 in the first example, and rw = 2
in the second, meaning three pixels will get regulated with τw = −1 in the first and two pixels
with τw = 1 in the second. The pixels are chosen at regular intervals through the row. The result
is shown in Figure 42. The error of the rounding is not removed, it’s just distributed throughout
the image rather than experiencing scaling artifacts in the right side of the image.

rw =

{
2n · (TW − 1)− sw · (SW − 1) if sw is rounded down to an integer
sw · (SW − 1)− 2n · (TW − 1) if sw is rounded up to an integer

(52)

τh is set the same way as τw in the vertical direction.

(a) Example 1: Three pixels shifted left

(b) Example 2: Two pixels shifted right

Figure 42: Compensation for Rounding Error

8.1.2. Edge-Catching

Figure 43(a) shows how linear interpolation may result in reduced edge quality. Ê(k) (from
Equation 53) represents the estimated luminance value of the interpolated pixel (using linear
interpolation), based on the neighboring pixels E(m) and E(m+ 1).

Ê(k) = (1− s) · E(m) + s · E(m+ 1) (53)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8.1. Algorithm 37

Ê(k) will clearly in many cases deviate from the ideal value E(k). To reduce the error, a simple
edge detection functionality is implemented in the Edgeprocessor. The edge is detected using
an edge-describing parameter L calculated from Equation 54. Utilizing the luminance of the
surrounding four pixels E(m−1), E(m), E(m+1) and E(m+2) (shown in Figure 43(b)), we
are able to determine which side of the pixel is more homogenous, and therefore should affect
the interpolated pixel more. The improvements are done by adjusting the s parameter either left
or right.

L = |E(m+ 1)− E(m− 1)| − |E(m+ 2)− E(m)| (54)

The edge-parameter L is interpreted by three different cases:

(a) Reduced edge sharpness from linear inter-
polation

(b) Edge detection based on four surrounding
pixels

Figure 43: Edge detection

• L = 0 indicates that the two sides of pixel k is symmetrical and s therefor remains un-
changed.

• L > 0 indicates that there are a bigger change in pixel intensity between E(m+1) and E(m-
1) compared to the change between E(m) and E(m+2). This indicates that the right side is
more homogenous and more important. An increased s will in this case result in a more
correct interpolated value.

• L < 0 indicates the opposite of the preceding case: the left side is more homogenous and
more important. A reduces s will result in a better estimation.

The adjustment of s is calculated by Equation 55.

snew =

{
sold + L · (1−s)

28
if L ≥ 0

sold + L · s
28

if L < 0
(55)

In the case of our Edgeprocessor, we base our interpolation on a maximum of two rows of
pixels. The size of the overlapping regions indicates whether we should base our edge detection
on the upper or lower rows of pixels. If top′(k, l) is larger than winH

2 , the upper row dominates
the overlap and is therefore used in edge detection. The adjustment parameters LA and AC is
calculated from Equation 56 and 57.

LA = |FS(m+ 1, n)− FS(m− 1, n)| − |FS(m+ 2, n)− FS(m,n)| (56)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

38 8. Egde-Oriented Image Scaling Processor

AC =

{
A′(m,n) if LA ≥ 0

A′(m+ 1, n) if LA < 0
(57)

The size of the overlapping areas can finally be calculated from Equation 58.

A′′(m,n) = A′(m,n)− LA ·
AC
28

A′′(m+ 1, n) = A′(m+ 1, n) + LA ·
AC
28

A′′(m,n+ 1) = A′(m,n+ 1)

A′′(m+ 1, n+ 1) = A′(m+ 1, n+ 1)

(58)

If the opposite is true, top′(k, l) being smaller than winH
2 , than the lower row is used. The

adjustment parameters LA and AC is calculated from Equation 59 and 60, and the size of the
overlapping areas changed to Equation 61.

LA = |FS(m+ 1, n+ 1)− FS(m− 1, n+ 1)| − |FS(m+ 2, n+ 1)− FS(m,n+ 1)| (59)

AC =

{
A′(m,n+ 1) if LA ≥ 0

A′(m+ 1, n+ 1) if LA < 0
(60)

A′′(m,n) = A′(m,n)

A′′(m+ 1, n) = A′(m+ 1, n)

A′′(m,n+ 1) = A′(m,n+ 1) − LA ·
AC
28

A′′(m+ 1, n+ 1) = A′(m+ 1, n+ 1) + LA ·
AC
28

(61)

8.2. Hardware Architecture

A pipeline structure is a natural way of implementing systems processing streaming data. The
choice of architecture results in better utilization of operators and potentially increase of max-
imal clock frequency. The Edgeprocessor is implemented as a 7-stage pipeline architecture
(shown in Figure 44) consisting of the blocks Controller, Approximate Module (AM), Register
Bank, Area Generator (AG), Edge Catcher (EC), Area Tuner (AT) and Target Generator (TG).
Pipeline registers marked P are scattered throughout the pipeline to store intermediate parame-
ters. [PYC09] claims this VLSI implementation of the edgeprocessor supports any magnification
factor mf between 1

64 and 64 with n set to 3 in Equation 47.

Approximate Module

The approximate module calculates the overlapping parameters left′(k, l), right′(k, l), top′(k, l)
and bottom′(k, l) based on the input frame dimensions (SH × SW) and the output frame di-
mensions (TH×TW). These calculations are done according to Equation 48 - 52. This module
is not shown in any detailed figure because of it’s complexity.

Register Bank

Since each new pixel potentially could be based on pixels from two successive rows, a need
for temporary storage arises. From Equation 42: FS(m,n), FS(m + 1, n), FS(m,n + 1) and
FS(m+1, n+1) is needed. In addition, from Equation 56 and 59: FS(m−1, n), FS(m−1, n+),

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8.2. Hardware Architecture 39

Figure 44: Edge Processor hardware architecture

FS(m+2, n) and FS(m+2, n) is needed. These luminance values are stored in the register bank
module, implemented as a shiftregister. As shown in Figure 45(b) and 45(a), the pixel luminance
values are stored in two pixel groups of four and shifted through a shift register (linestore), until
they are needed again.

(a) Register Bank Architeture

(b) Where each pixel is stored

Figure 45: Register Bank and Linestore

Area Generator

The area generator calculates the overlapping areas according to Equation 46 using four (4x4)
integer multiplicators.

Edge Catcher

The edge catcher performs the edge detection presented in Section 8.1.2 by calculating LA from
Equation 59 and 56. Through a series of multiplexers, the most dominant pixel row are chosen
to produce LA. The comparison result U_GE indicates whether upper (U_GE = 1) or lower
(U_GE = 0) row of pixels are used in the edge detection.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

40 8. Egde-Oriented Image Scaling Processor

(a) Area Generator (b) Edge Catcher

Figure 46: Area Tuner and Edge Catcher

Area Tuner

The area tuner utilizes the comparison results LA and U_GE from the edge catcher to adjust
overlapping areas according to Equation 58 and 61. This module is the final step in the process
of calculating the filter coefficients used in the target generator.

Target Generator

The target generator is the actual scaling filter. This is the module where all the relevant pa-
rameters end up to calculate the estimated luminance value for the new target pixel. Through
4 MULT, 3 ADD units and a shifter are Equation 42 finally being calculated. It is this module
which is simplified severely by replacing a divisor unit with a shifter.

Controller

The controller sends all the required control signals to all the modules throughout operation. At
any time, computation for 7 different target pixel be placed in the pipeline, all in different stages
of computation. A calculation of a single target pixel requires seven clock cycles, but since the
calculations is parallelized by a pipeline, it will complete one new target pixel value every clock
cycle.

8.3. Simulation and implementation

[PYC09] has performed computational complexity evaluation, quantitative and visual quality
comparisons of the Edgeprocessor, nearest neighbor, bilinear, bicubic and winscale. The compu-
tational complexity was compared by implementing the algorithms in C on two different PC ar-
chitectures. By upscaling an image from 400x400 to 512x512 pixels, the results clearly showed
that the edgeprocessor algorithm required less time than the other area-pixel based algorithms
and bicubic.

To get a quantitative comparison of the algorithms, a series of test images were first down-
scaled/upscaled with a common algorithm then upscaled/downscaled to the original size with

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

8.3. Simulation and implementation 41

(a) Area Tuner

(b) Target Generator

Figure 47: Area tuner and Target Generator

the different algorithms. The quantitative evaluation were then based on the peak signal-to-
noise ratio (PSNR) between the original image and the regained image. Three test was done
with the source image (512x512): downscaling to 400x400, downscaling to 256x256 and up-
scaling to 600x600. It was concluded that the edgeprocessor performed better than the other
low-complexity algorithms, but the degree of improvement were dependent on the image con-
tent.

The visual quality were evaluated by upscaling a picture of a text string with very sharp edges.
As predicted would the nearest neighbor model produce a blocky image, while the bilinear model
produce a blurry image. The important result from this test was that the edgeprocessor delivered
better visual quality then winscale, with near-bicubic quality at lower computational complexity.

The edgeprocessor were implemented on three different technologies; two FPGAs and one
ASIC. The performance and area consumption is summarized in Table 5.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

42 8. Egde-Oriented Image Scaling Processor

Table 5: Implementation details for Edgeprocessor

FPGA Xilinx Virtex-II Pro
XC2VP50

Altera CycloneII
EP2C8F256C6

TCMC’s 018 µm pro-
cess (ASIC)

Line Buffer 1 1 1
Area 581 CLB 1.06K logic elements 10.4K gate counts
Max Frequency 142 MHz 109 MHz 200MHz

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9. Evaluating Winscale, Edgeprocessor and reference scaler 43

9. Evaluating Winscale, Edgeprocessor and reference scaler

The computational complexity evaluation of edgeprocessor referred to in Section 8.3 was based
on this single upscaling experiment and the quantitative quality is only evaluated in simulations
with the magnification factors 400

512 , 600
512 and 1

2 . None of these tests required a prescaler. As
discussed in Section 7.1, winscale algorithm requires a prescaler when scaling with a factor
lower than 1

2 . This would lengthen the computational time depending on the chosen prescaler.
It is not clear from [PYC09] whether the edge processor requires an prescaler. As I see it, the
edgeprocessor would require a prescaler for magnification factors lower than 1

2 , as it is a more
advanced development of the winscale algorithm, but based on the same principles of 2x2 pixel
window-overlapping.

The visual quality was evaluated using only one image of a text string. These type of non-
natural images consists of large homogenous areas with few edges. Natural images should have
been included in the test, as the videoscaler should provide high quality scaling for both natural
and non-natural images. The natural images would expose aliasing effects caused by scaling of
areas with large amount of high frequency information.

The implementation resource requirements and maximal performanxe is summarized in Table
6. These are still difficult to compare, as they are implemented on different FPGA families. We
may assume that the Edge Processor would require considerable less resources on a common
FPGA chip, compared to the reference scaler.

Table 6: Implementation comparison
Algorithm Reference

Scaler
Winscale Edge Pro-

cessor
Edge Pro-
cessor

Edge Pro-
cessor

FPGA Altera Cy-
cloneIII
EP3C120
F780C7

NA Xilinx
Virtex-II Pro
XC2VP50

Altera Cy-
cloneII
EP2C8
F256C6

TCMC’s 018
µm process
(ASIC)

Line Buffer N/A 1 1 1 1
Area 2019 logic

cells
29K gates 581 CLB 1.06K logic

elements
10.4K gate
counts

Max Fre-
quency

162.73MHz 65 MHz 142 MHz 109 MHz 200MHz

9.1. My Matlab Model Comparisons

The visual quality of 6 different algorithms were compared by scaling tests performed in Matlab.
Scaled images from Matlab’s own implementations of the Nearest Neighbor, Bilinear, Bicubic
and Lanczos2 algorithms were compared to images scaled by the Cisco reference scaler and my
Matlab model of Winscale (Appendix B.3 - B.5). Due to limited amount of time, the edgepro-
cessor is not included in these comparisons.

One of the most common images used in evaluating image processing algorithms, is the image
of Lenna ([Wik11], Figure 48(a)). The image of the swedish playboy model is a good example
of a natural image containing both low- and high-frequency regions. Another useful image is
the synthetically generated test pattern in Figure 48(b), called a Zone Plate. It looks like ripples
in a pond, when a stone is tossed into it. The pattern can be described mathematically as a image
containing frequency components from zero and upwards, directed from the center and towards

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

44 9. Evaluating Winscale, Edgeprocessor and reference scaler

the edges. Ideal scaling algorithms would keep the shape of the pattern without adding artifacts.

The visual quality of the image results of the following tests are highly dependent on the type
of print method used in printing this thesis. For this reason, have all the image results been
attached this report as a .zip file. See Appendix A.

(a) Lenna.png (b) Rings.png

Figure 48: Test images

Upscaling

The first upscaling test was performed on a smaller region of the two source images, Lenna’s eye
(Figure 49(a)) and parts of the Zone Plate pattern (Figure 49(b)). These two regions were scaled

(a) Lenna.png Source
(88x88)

(b) Rings.png Source
(100x100)

Figure 49: Source Regions Upscaling

up by the factors 1.681 and 2. The results are shown in Figure 50, 51,52 and 53. The reference
scaler performs equally to Matlab’s Lanczos2 and bicubic scaler with better edge response com-
pared to bilinear. The nearest neighbor performs as expected by producing very aliased curves
in both cases. The winscale algorithm (Figure 53(f), 52(f)) produces the same aliasing effects as
the nearest neighbour at SF = 2. Various experiments confirms the statement from [CHK03],
which states that the winscale algorithm is the same as nearest neighbor at integer scaling fac-
tors. The aliasing effects actually reduces when the scalingfactor is moved further away from an
integer factor. This can be seen by observing less aliasing in Figure 51(f) than in Figure 53(f)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9.1. My Matlab Model Comparisons 45

The aliasing at integer factors is an obvious disadvantage of the winscale algorithm. The ideal
algorithm should perform equally for different factors.

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 50: Rings.png Upscaling factor = 1.681

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

46 9. Evaluating Winscale, Edgeprocessor and reference scaler

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 51: Lenna.png Upscaling factor = 1.681

Downscaling

The Zone Plate pattern is especially important in downscaling test. The high frequency details
will eventually reach pixel size when downscaling an image. At this point should the algorithm
simulate our eye functionality by "blurring" the image, as our sight does with objects at long
distances. As the winscale algorithm is modeled without a prescaler, visual comparisons may
only be viewed with scalingfactors 1

2 < SF ≤ 1. Figure 54, 55, 56 and 57 shows the resulting
images of downscaling factors 0.5 and 0.78125. In evaluating of the Lena test (Figure 55 and

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9.1. My Matlab Model Comparisons 47

57) we clearly see that Nearest Neighbor and Bilinear underperforms on aliasing and blurring
respectively. The reference model seemes to produce a slightly blurrier image at SF = 0.78125,
compared to the Bicubic, Lanczos2 and the Winscale. At SF = 0.05 it’s nearly impossible to
separate bicubic, Cisco model, Lanczos2 and the Winscale. From these tests we can conclude
that the winscale algorithm preforms very good at downscaling natural images in the range
1
2 < SF ≤ 1. The question on how the winscale model performs under the 0.5 limit relies much
on the chosen prescaler. This question remains unanswered, as potential prescalers not were
investigated in this masters thesis. In evaluation of the Zone Plate test (Figure 54 and 56) we
observe that the nearest neighbor, bilinear and winscale performs worse than bicubic, reference
model and Lanczos2 in the high frequency regions. This proves that winscale is not the optimal
algorithm for scaling synthetic images containing high frequency components, such as sharp and
thin edges.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

48 9. Evaluating Winscale, Edgeprocessor and reference scaler

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 52: Rings.png Upscaling factor = 2.0

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9.1. My Matlab Model Comparisons 49

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 53: Lenna.png Upscaling factor = 2.0

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

50 9. Evaluating Winscale, Edgeprocessor and reference scaler

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 54: Rings.png Upscaling factor = 1
2

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9.1. My Matlab Model Comparisons 51

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 55: Lenna.png Upscaling factor = 1
2

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

52 9. Evaluating Winscale, Edgeprocessor and reference scaler

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 56: Rings.png Upscaling factor = 0.78125

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

9.1. My Matlab Model Comparisons 53

(a) Nearest Neighbor (b) Bilinear

(c) Bicubic (d) Lanczos2

(e) Reference Algorithm (f) Winscale

Figure 57: Lenna.png Upscaling factor = 0.78125

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

54 10. Video Scaling IP Cores

10. Video Scaling IP Cores

An intellectual property core (IP Core) is an of-the-shelf module, ready for ASIC or FPGA
implementation. They are often optimized for a specific manufacturers device for maximum
performance and low implementation cost. The cores are often configurable or parameterizable,
so they can be adjusted for different applications. Models for functional simulation may be
generated by the developer environment. The use of IP cores may reduce a product’s time-to-
market by avoiding designing standardized functions.

The disadvantage by using IP Cores is the lack of access to the IP Core source code. This
makes more radical customization or debugging difficult. Although some IP providers provides
the IP source code, the license often is very expensive. The designer gets bound to FPGA from
a specific provider, if the source code is not available.

Altera provides the two video scaler IP cores Scaler and Scaler II in their Viedeo and Image
Processing Suite ([alt]). Both of them are easily generated through Altera’s MegaWizard Plug-In
Manager (Figure 58,59).

Scaler

The Scaler MegaCore function resizes video streams. The Scaler supports nearest neighbor,
bilinear, bicubic, and polyphase scaling algorithms. You can configure the Scaler to change
resolutions or filter coefficients, or both, at run time using an AvalonMM slave interface.

(a) Resolution Settings (b) Algorithm Settings (c) Coefficient Settings

Figure 58: Mega Wizard Plug-In Manager - Scaler I

Scaler II

The Scaler II MegaCore function resizes video streams more efficiently than the Scaler. The
Scaler II reduces the required resources with the support of 4:2:2 chroma data sampling rate.
The Scaler II supports only bilinear and polyphase scaling algorithms.

IP-core Implementation

Table 10 presents some estimates to resource requirements for several specific scaling examples.
This information is taken from Altera’s own documentation ([Alt11],page 1-17:table 1-20 and
1-21) of the scalers. Statistics for the reference scaler is added for comparison purposes. These

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

10. Video Scaling IP Cores 55

Figure 59: Mega Wizard Plug-In Manager - Scaler II

statistics are difficult to directly compare as it is not clear how flexible the example IP-core is
at run-time according to non-fixed source and target resolutions. It would be very interesting to
get detailed statistics on a more general purpose video scaler based on these two IP-cores. Such
investigations have not been done due to time limitations.

Table 7: Scaler I and II statistics

IP core Device Family Combinational
LUTs/ALUTs

Logic
Registers

Bits M9K (9x9) (18x18) fMAX

(MHz)
Scaling up or down between NTSC standard definition and 1080 pixel high definition using 10 taps horizontally and 9
vertically. Resolution and coefficients are set by a run-time control interface
Scaler I Cyclone IV GX 4048 5243 417456 - 19 - 182.95
Scaler II Cyclone IV GX 2839 4016 417936 76 29 - 156.37
Scaling NTSC standard definition (720x480) RGB to high definition 1080p using a bicubic algorithm
Scaler I Cyclone IV GX 1728 2078 69444 14 8 8 203.46
Scaler II Cyclone IV GX 1397 1909 70512 13 12 - 167.34
Scaling up to, or down from maximum 1080p using a polyphase Lanczos2 algorithm using from 4 taps up to 16 taps.
Resolution and coefficients are set by a run-time control interface.
Reference
Scaler

Cyclone III 1157 2019 81920 10 8 - 162.73

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

56 11. Dynamically Reconfigurable FPGA

11. Dynamically Reconfigurable FPGA

As system designs grows larger and more complex, higher area requirements are set to the
computing chip. FPGA has the advantage over ASIC, in that it may be configured at run-time.
Such computing FPGAs are called run-time reconfigurable (RTR) FPGAs. This enables FPGAs
to change functionality at runtime. A pipeline too large for the FPGA, could be implemented on
a single FPGA by configuring different pipeline-stages at different times. Intermediate results
have to be stored in registers while the FPGA is reconfigured. A time and resource overhead is
connected to the use of RTR FPGAs. It is important that this overhead is negligible with respect
to the time and resources used for computation. [RDH] shows an example of how a rather
large video scaler may be implemented on a small Xilinx Reference Board. In this example, the
reconfiguration overhead is less than one percent of the total computation time.

Another way of utilizing the RTR properties of the FPGA, is by making the actual filter
structures in the different scalers more efficient. This could be done independently of the chosen
scaling algorithm. [Bys08] describes how fixed constant coefficient FIR filter structures may be
optimized by encoding coefficients with a CSD-encoding. Full multiplicatiors could thereby be
replaced with lower complexity coefficient-specific multiplicators. It was proven to both reduce
area consumption by up to 20% and increase maximum frequency up to 100% compared to the
2’s complement representation. The coefficients are changed at every other interpolated pixel
in the video scaling application. This would require reconfiguration of the scaler between every
pixel. The reconfiguration total overhead would have to be significantly lower than the time
in-operation, for this approach to be effective.

Yet another way of utilizing RTR properties would be by replacing the entire scaling structure.
This could be useful if different algorithms were to be used for different scaling factors. Say that
one Scaler A performs good upscaling quality at low areas, but requires large areas if used for
downscaling. A second Scaler B, good at downscaling could replace Scaler A for downscaling
factors. The total time and area required for this reconfigurable solution should not exceed an
equal quality algorithm. It would be beneficial that Scaler A and Scaler B would be assembled
by similar modules. This would reduce the required amount of reconfiguration, and reduce area
and time overhead. Such potential architecture and algorithms have not been further researched
or discussed beyond what have been presented in this section.

There is little established theory on video scalers based on dynamic reconfigurable FPGA
architectures. This makes it difficult evaluate whether such solutions could be beneficial.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

12. Conclusion and future work 57

12. Conclusion and future work

It is clear that interpolation has a central role in designing a video or image scaler, although sinc-
based interpolation algorithms suffer from some ringing-effects. The area-pixel model shows
potential for low resource requirements and good quality in both upscaling and downscaling.
The major drawback of the winscale algorithm is the fact that the visual quality varies, depending
on whether the scale factor is near an integer. This makes it a not adequate replacement for such
high complexity algorithms as Lanczos2 or the algorithm used in the reference scaler. The visual
quality has to be consistent and somewhat predictable when changed. The visual quality of the
edgeprocessor may be more persistent as a result of the added complexity of edge-detection and
the compensation of the approximation, but further research, simulation and testing with this
implementation is necessary.

The IP-core scalers examples could provide video scaling with faster operation, varying be-
tween 156 MHz and 203 MHz maximal frequency. IP-core could save both design cost and
time-to-marked compared to own designs.

High complexity scalers based on the polyphasic FIR-filter structures and the Lanczos2 kernel
will at this point in time be the best alternative to the reference scaler. The IP-core implementa-
tion of such scalers may provide better utilization of the FPGA resources.

Future Work

Future work might include:

• Matlab modeling and simulation of the edgeprocessor for visual quality evalutation.

• Implementation of a configured Scaler and Scaler II IP-core with the same configuration
as the reference scaler.

• Complete implementation of the edgeprocessor on an FPGA in a videoconferencing sys-
tem for in-field tests.

• Further research of effective frame prescalers, providing good visual quality together with
area-pixel based algorithms, such as the edgeprocessor.

• Further research within the use of dynamical reconfigurable FPGA in video scaling ap-
plications. The prescalers in low complexity implementations may be implemented as a
reconfigurable, and therefore optimized part of the scaler.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

58 A. File attachments

A. File attachments

A.1. List of file attachments

The following files where attached to this thesis as a .zip file:

Table 8: File Attachments

Path Filename Description
\ coefficients.m MATLAB Lanczos2 Coefficient generator script
\ windowgeneration.m MATLAB window function scipt
\ winscale_top.m MATLAB MODEL: Winscale (1/3)
\ winscale_4pix.m MATLAB MODEL: Winscale (2/3)
\ winscale_getDelta.m MATLAB MODEL: Winscale (3/3)
\ lenna.png Lenna Test Image
\ rings.png Zone Plate Test Image
\lenna_2 \ [MULTIPLE .PNG] Lenna image results factor = 2.0
\lenna_05 \ [MULTIPLE .PNG] Lenna image results factor = 0.5
\lenna_168 \ [MULTIPLE .PNG] Lenna image results factor = 1.681
\lenna_0781 \ [MULTIPLE .PNG] Lenna image results factor = 0.78125
\rings_2 \ [MULTIPLE .PNG] Rings image results factor = 2.0
\rings_05 \ [MULTIPLE .PNG] Rings image results factor = 0.5
\rings_168 \ [MULTIPLE .PNG] Rings image results factor = 1.618
\rings_0781 \ [MULTIPLE .PNG] Rings image results factor = 0.78125

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

B. Matlab source code 59

B. Matlab source code

B.1. windowgeneration.m

%SCRIPT FOR PLOTTING THE WINDOWING FUNCTIONS
%
% Author : Z I P c o r e s . com (2 0 0 9)
% " E s t i m a t i n g p o l y p h a s e f i l t e r c o e f f i c i e n t s w i t h a windowed f u n c t i o n "
%
% 1 . Lanczos2−windowed s i n c
% 2 . Blackman−windowed s i n c
% 3 . Hamming−windowed s i n c
% 4 . Kaizer−windowed s i n c

% Lanczos2−windowed s i n c over range −N/ 2 ,N/ 2
f i g u r e (1) ;
N = 5 ;
ks = −(N−1) / 2 : 0 . 0 0 1 : (N−1) / 2 ;
kw = −(N−1) / 2 : 0 . 0 0 1 : (N−1) / 2 ;

s = s i n c (ks) ;
w = s i n c (kw / 2) ;

ws = s .∗w;
%p l o t (ks , ws)
p l o t (ks ,w)

% Blackman−windowed s i n c over range −N/ 2 ,N/ 2
f i g u r e (2) ;
N = 5 ;
ks = −(N−1) / 2 : 0 . 0 0 1 : (N−1) / 2 ;
kw = 0 : 0 . 0 0 1 : (N−1) ;

s = s i n c (ks) ;
w = 0 . 4 2 − 0 . 5∗ cos (2∗ pi ∗kw / (N−1)) + 0 .08∗ cos (4∗ pi ∗kw / (N−1)) ;

ws = s .∗w;
%p l o t (ks , ws)
p l o t (ks ,w)

% Hamming−windowed s i n c over range −N/ 2 ,N/ 2
f i g u r e (3) ;
N = 5 ;
ks = −(N−1) / 2 : 0 . 0 0 1 : (N−1) / 2 ;
kw = 0 : 0 . 0 0 1 : (N−1) ;

s = s i n c (ks) ;
w = 0 .53836 − 0 .46164∗ cos (2∗ pi ∗kw / (N−1)) ;

ws = s .∗w;
%p l o t (ks , ws)
p l o t (ks ,w)

% Kaiser−windowed s i n c over range −N/ 2 ,N/ 2
f i g u r e (4) ;
N = 5 ;
ks = −(N−1) / 2 : 0 . 0 0 1 : (N−1) / 2 ;
kw = 0 : 0 . 0 0 1 : (N−1) ;

s = s i n c (ks) ;

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

60 B. Matlab source code

a l p h a = 2∗ pi ;
w = b e s s e l i (0 , a l p h a ∗ s q r t (1−(2∗kw / (N−1) −1) . ^ 2)) / b e s s e l i (0 , a l p h a) ;

ws = s .∗w;
%p l o t (ks , ws)
p l o t (ks ,w)

B.2. coefficients.m

%SCRIPT FOR CALCULATING COEFFICIENTS FOR THE FOLLOWING FILTER
%
% Lanczos2−windowed s i n c f u n c t i o n
% 5 t a p s
% 16 ph as es per t a p
%
% Author : Z I P c o r e s . com (2 0 0 9)
% " E s t i m a t i n g p o l y p h a s e f i l t e r c o e f f i c i e n t s w i t h a windowed f u n c t i o n "
%

% C a l c u l a t e c o e f f i c i e n t s f o r Phases 0 t o 15 ,
% Taps 0 , 1 , 2 , 3 , 4
f o r p_ index = 1 :16

f o r t _ i n d e x = 1 : 5
p = (p_ index − 1) / 1 6 ;
t = (t _ i n d e x − 1) ;
x = t − 2 − p ;
c o e f f (p_index , t _ i n d e x) = s i n c (x) ∗ s i n c (x / 2) ;

end
end

% Q u a n t i z e t o 2.6− b i t s i g n e d numbers
c o e f f _ q u a n t = round (c o e f f ∗ 64) ;

% Check t h e y sum t o 1
sum_coef f = sum (c o e f f , 2) ;
s u m _ c o e f f _ q u a n t = sum (c o e f f _ q u a n t , 2) ;

% W r i t e c o e f f i c i e n t s t o a f i l e I=Phase , J=Tap
f i d = fopen (’ c o e f f s _ 5 t a p . t x t ’ , ’w’) ;
f p r i n t f (f i d , ’ TAP0 TAP1 TAP2 TAP3 TAP4 SUM\ n \ n ’) ;
f o r I = 1 :16

f p r i n t f (f i d , ’PHASE%2d : ’ , I−1) ;
f o r J = 1 : 5

f p r i n t f (f i d , ’%5d ’ , c o e f f _ q u a n t (I , J)) ;
end

i f s u m _ c o e f f _ q u a n t (I) == 64
f p r i n t f (f i d , ’%5d \ n ’ , s u m _ c o e f f _ q u a n t (I)) ;

e l s e
f p r i n t f (f i d , ’%5d ∗ \ n ’ , s u m _ c o e f f _ q u a n t (I)) ;

end
end

% The s c r i p t s t o r e s t h e c a l c u l a t e d c o e f f i c e n t s t o a t e x t f i l e .
% The v a l u e s l a b e l l e d w i t h a a s t e r i s k (∗) i n t h e o u t p u t t e x t f i l e must be
% a d j u s t e d i n o r d e r t o o b t a i n sum t o u n i t y .
%

B.3. winscale_top.m

f u n c t i o n t a r g e t _ i m a g e = w i n s c a l e _ t o p (source_ image , newHeight , newWidth , type
)

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

B.3. winscale_top.m 61

%WINSCALE_TOP
% SOURCE_IMAGE − o r i g i n a l image (o l d H e i g h t x o l d Wi d t h) [IMG]
% NEWHEIGHT − s c a l e d h e i g h t [PIX]
% NEWWIDTH − s c a l e d w i d t h [PIX]
% TARGET_IMAGE − s c a l e d image (newHeight x newWidth) [IMG]
% TYPE − f o r t e s t i n g ’ i n t ’ or ’ f l o a t ’

%−−
% SOURCE IMAGE
%
% C0 C2
%
% C1 C3
%
%
% C0−C3 are p i x e l v a l u e s
% o l d W i d t h −
% o l d H e i g h t −
%

oldWidth = s i z e (source_ image , 2) ;
o l d H e i g h t = s i z e (source_ image , 1) ;

%−−
% TARGET IMAGE
%
% A0 A2
%
% A1 A3
%
%
% A0 − A3 are s i z e o f t h e o v e r l a p p i n g a r e a s

%o u t p u t _ i m a g e = z e r o s (newHeight , newWidth) ;
o u t p u t _ i m a g e = z e r o s (newHeight , newWidth) ;

%−−
% DISPLAY SECTION
di sp (’−−−−−−−−−−−−−−−−−−−−−−−’) ;
di sp (’− NEW SCALING STARTED ’)
di sp (s p r i n t f (’−− oldWidth : %f ’ , o ldWidth)) ;
di sp (s p r i n t f (’−− o l d H e i g h t : %f ’ , o l d H e i g h t)) ;
di sp (’−−’)
di sp (s p r i n t f (’−− newWidth : %f ’ , newWidth)) ;
di sp (s p r i n t f (’−− newHeight : %f ’ , newHeight)) ;
di sp (’−−’)

i f (o ldWidth > newWidth) && (o l d H e i g h t > newHeight)
%−−−
% DOWNSCALING
di sp (’−−−−− DOWNSCALING −−−−−’) ;

s c a l e t y p e = ’ d o w n s c a l i n g ’ ;

SF = 1 . 0 ;

winW = 1 . 0 ;

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

62 B. Matlab source code

winH = 1 . 0 ;

sourW = newWidth / o ldWidth ;
sourH = newHeight / o l d H e i g h t ;

%−−−
% C a l c u l a t i n g c o o r d i n a t e s f o r o l d p i x e l s . (TARGET INDEXED)
% Same as " C o o r d i n a t e Accumula tor " i n a r t i c l e
ne x t _x = z e r o s (1 , newWidth) ;
ne x t _x (1) = 0 . 5 + sourW / 2 ;
f o r i = 1 : (oldWidth −1)

ne x t _x (i +1) = n ex t _x (i) + sourW ;
end

ne x t _y = z e r o s (1 , newHeight) ;
ne x t _y (1) = 0 . 5 + sourH / 2 ;
f o r i = 1 : (o l d H e i g h t −1)

ne x t _y (i +1) = n ex t _y (i) + sourH ;
end

%n e x t _ x ;
%n e x t _ y ;

%I n i t i a l v a l u e f o r s o u r c e p i x e l s are a l l w a y s s o u r c e (1 , 1) f o r
%d o w n s c a l i n g
s o u r c e _ x = 1 ;
%s o u r c e _ y = 1;

f o r t a r g e t _ x =1: newWidth
s o u r c e _ y = 1 ;
f o r t a r g e t _ y =1: newHeight

%u p p e r _ b o r d e r = n e x t _ y (s o u r c e _ y) − sourH / 2 ;
l o w e r _ b o r d e r = ne x t _y (s o u r c e _ y) + sourH / 2 ;

%l e f t _ b o r d e r = n e x t _ x (s o u r c e _ x) − sourW / 2 ;
r i g h t _ b o r d e r = n ex t_x (s o u r c e _ x) + sourW / 2 ;

upper_window_border = t a r g e t _ y − winH / 2 ;
l e f t _ w i n d o w _ b o r d e r = t a r g e t _ x − winW / 2 ;

%Check i f window b ord er has moved so much t h a t s o u r c e p i x e l s has
%changed i n y−d i r e c t i o n
whi le upper_window_border >= l o w e r _ b o r d e r

s o u r c e _ y = s o u r c e _ y + 1 ;
l o w e r _ b o r d e r = ne x t _y (s o u r c e _ y) + sourH / 2 ;

end

%Check i f window b ord er has moved so much t h a t s o u r c e p i x e l s has
%changed i n x−d i r e c t i o n
whi le l e f t _ w i n d o w _ b o r d e r >= r i g h t _ b o r d e r

s o u r c e _ x = s o u r c e _ x + 1 ;
r i g h t _ b o r d e r = n ex t _x (s o u r c e _ x) + sourW / 2 ;

end

%s o u r c e _ y
%s o u r c e _ x

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

B.3. winscale_top.m 63

s o u r c e _ 4 p i x = z e r o s (2 , 2) ;
s o u r c e _ 4 p i x (1 , 1) = s o u r c e _ i m a g e (s o u r c e _ y , s o u r c e _ x) ; %C0
s o u r c e _ 4 p i x (2 , 1) = s o u r c e _ i m a g e (s o u r c e _ y + 1 , s o u r c e _ x) ; %C1
s o u r c e _ 4 p i x (1 , 2) = s o u r c e _ i m a g e (s o u r c e _ y , s o u r c e _ x +1) ; %C2
s o u r c e _ 4 p i x (2 , 2) = s o u r c e _ i m a g e (s o u r c e _ y + 1 , s o u r c e _ x + 1) ; %C3

i f strcmp (’ i n t ’ , type)
o u t p u t _ i m a g e (t a r g e t _ y , t a r g e t _ x) = f l o o r (w i n s c a l e _ 4 p i x (

s o u r c e _ 4 p i x , ne x t _x (s o u r c e _ x) , ne x t _y (s o u r c e _ y) ,winW , winH ,
sourW , sourH , SF , t a r g e t _ x , t a r g e t _ y , s c a l e t y p e)) ;

e l s e
i f strcmp (’ f l o a t ’ , type)

o u t p u t _ i m a g e (t a r g e t _ y , t a r g e t _ x) = w i n s c a l e _ 4 p i x (s o u r c e _ 4 p i x ,
ne x t _x (s o u r c e _ x) , n ex t _y (s o u r c e _ y) ,winW , winH , sourW , sourH ,
SF , t a r g e t _ x , t a r g e t _ y , s c a l e t y p e) ;

e l s e
d i sp (’No TYPE (i n t o r f l o a t) a s s i g n e d ’) ;

end

end

end
end

e l s e
i f (o ldWidth < newWidth) && (o l d H e i g h t < newHeight)

%−−−
% UPSCALING
di sp (’−−−−−− UPSCALING −−−−−−’) ;

s c a l e t y p e = ’ u p s c a l i n g ’ ;

sourW = 1 . 0 ;
sourH = 1 . 0 ;

%−−
% FILTER WINDOW
%
% winX , winY − c e n t e r c o o r d i n a t e s
%
%
% winW = (1 / HSR) − i n c r e m e n t a l h o r i z o n t a l ([W] i d t h) v a l u e
% winH = (1 / VSR) − i n c r e m e n t a l v e r t i c a l ([H] e i g h t) v a l u e
%
% HSR = newWidth / o l d W i d t h − [H] o r i z o n t a l [S] c a l i n g [R] a t i o
% VSR = newHeight / o l d H e i g h t − [V] e r t i c a l [S] c a l i n g [R] a t i o
%

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

64 B. Matlab source code

% SF = 1 . 0 / (winW∗winH)
%

HSR = newWidth / o ldWidth ;
VSR = newHeight / o l d H e i g h t ;

winW = (1 / HSR) ;
winH = (1 / VSR) ;

SF = 1 . 0 / (winW∗winH) ;

%−−
% DISPLAY SECTION
di sp (s p r i n t f (’−− h o r i z o n t a l s c a l i n g f a c t o r HSR : %f ’ ,HSR)) ;
di sp (s p r i n t f (’−− v e r t i c a l s c a l i n g f a c t o r VSR : %f ’ ,VSR)) ;
di sp (’−−’)
di sp (s p r i n t f (’−− SF : %f ’ , SF)) ;

%−−−
% C a l c u l a t i n g c o o r d i n a t e s f o r new p i x e l s .
% Same as " C o o r d i n a t e Accumula tor " i n a r t i c l e
ne x t _x = z e r o s (1 , newWidth) ;
ne x t _x (1) = 0 . 5 + winW / 2 ;
f o r i = 1 : (newWidth−1)

ne x t _x (i +1) = n ex t _x (i) + winW ;
end

ne x t _y = z e r o s (1 , newHeight) ;
ne x t _y (1) = 0 . 5 + winH / 2 ;
f o r i = 1 : (newHeight−1)

ne x t _y (i +1) = n ex t _y (i) + winH ;
end

%n e x t _ x
%n e x t _ y

%t a r g e t _ x = 1;
%t a r g e t _ y = 4;

%source_ image

f o r t a r g e t _ x =1: newWidth
f o r t a r g e t _ y =1: newHeight

u p p e r _ b o r d e r = ne x t _y (t a r g e t _ y) − winH / 2 ;
l o w e r _ b o r d e r = ne x t _y (t a r g e t _ y) + winH / 2 ;
l e f t _ b o r d e r = ne x t_ x (t a r g e t _ x) − winW / 2 ;
r i g h t _ b o r d e r = n ex t_x (t a r g e t _ x) + winW / 2 ;

u p p e r _ s o u r c e _ r o w = round (u p p e r _ b o r d e r) ;

l e f t _ s o u r c e _ r o w = round (l e f t _ b o r d e r) ;
%d i s p (s p r i n t f (’ up pse r_s our ce_ row = %f ’ , upper_source_row)) ;
%d i s p (s p r i n t f (’ l e f t _ s o u r c e _ r o w = %f ’ , l e f t _ s o u r c e _ r o w)) ;
% Border c o n d i t i o n s

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

B.3. winscale_top.m 65

%l o w e r _ b o r d e r >= o l d H e i g h t + 0 . 5

%((o l d H e i g h t + 0 . 5) − l o w e r _ b o r d e r)

%Check i f c u r r e n t f rame i s a b ord er f rame on lower boundry
i f (((o l d H e i g h t − 0 . 5) − u p p e r _ b o r d e r) <(10^−10))

u p p e r _ s o u r c e _ r o w = u p p e r _ s o u r c e _ r o w −1;
% d i s p (s p r i n t f (’ Lower boundry reached . upper_source_row changed =

%f ’ , upper_source_row))
end

%Check i f c u r r e n t t a r g e t f rame i s a b ord er f rame r i g h t boundry
i f (((o ldWidth − 0 . 5) − l e f t _ b o r d e r) <(10^−10))

l e f t _ s o u r c e _ r o w = l e f t _ s o u r c e _ r o w − 1 ;
end

%d i s p (s p r i n t f (’ l e f t _ s o u r c e _ r o w = %f ’ , l e f t _ s o u r c e _ r o w)) ;
%d i s p (s p r i n t f (’ upper_source_row = %f ’ , upper_source_row)) ;

%E x t r a c t i n g t h e 4 p i x e l s o v e r l a p p e d by t h e window
s o u r c e _ 4 p i x = z e r o s (2 , 2) ;
s o u r c e _ 4 p i x (1 , 1) = s o u r c e _ i m a g e (u p p e r _ s o u r c e _ r o w ,

l e f t _ s o u r c e _ r o w) ; %C0
s o u r c e _ 4 p i x (2 , 1) = s o u r c e _ i m a g e (u p p e r _ s o u r c e _ r o w + 1 ,

l e f t _ s o u r c e _ r o w) ; %C1
s o u r c e _ 4 p i x (1 , 2) = s o u r c e _ i m a g e (u p p e r _ s o u r c e _ r o w ,

l e f t _ s o u r c e _ r o w +1) ; %C2
s o u r c e _ 4 p i x (2 , 2) = s o u r c e _ i m a g e (u p p e r _ s o u r c e _ r o w + 1 ,

l e f t _ s o u r c e _ r o w + 1) ; %C3

%s o u r c e _ 4 p i x ;

%C a l c u l a t e i n t e r p o l a t e d v a l u e based on :
% − 4 o r i g i n a l p i x e l s (s o u r c e _ 4 p i x)
% − window dimmens ions (SF , winW , winH ,)
% − window p o s i t i o n (l e f t _ s o u r c e _ r o w , upper_source_row , n e x t _ x (

t a r g e t _ x) , n e x t _ y (t a r g e t _ y))

i f strcmp (’ i n t ’ , type)

o u t p u t _ i m a g e (t a r g e t _ y , t a r g e t _ x) = f l o o r (w i n s c a l e _ 4 p i x (s o u r c e _ 4 p i x ,
l e f t _ s o u r c e _ r o w , uppe r_source_row , winW , winH , sourW , sourH , SF , nex t_ x
(t a r g e t _ x) , ne x t _y (t a r g e t _ y) , s c a l e t y p e)) ;

e l s e
i f strcmp (’ f l o a t ’ , type)

o u t p u t _ i m a g e (t a r g e t _ y , t a r g e t _ x) = w i n s c a l e _ 4 p i x (s o u r c e _ 4 p i x ,
l e f t _ s o u r c e _ r o w , uppe r_source_row , winW , winH , sourW , sourH , SF , nex t_ x
(t a r g e t _ x) , ne x t _y (t a r g e t _ y) , s c a l e t y p e) ;
e l s e

d i sp (’No TYPE (i n t o r f l o a t) a s s i g n e d ’) ;
end

end

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

66 B. Matlab source code

end
%

end

end
end

i f strcmp (’ i n t ’ , type)
t a r g e t _ i m a g e = u i n t 8 (o u t p u t _ i m a g e) ;

e l s e
i f strcmp (’ f l o a t ’ , type)

t a r g e t _ i m a g e = o u t p u t _ i m a g e ;
e l s e

d i sp (’No TYPE (i n t o r f l o a t) a s s i g n e d ’) ;
end

end

end

B.4. winscale_getDelta.m

f u n c t i o n d e l t a = w i n s c a l e _ g e t D e l t a (windowLenght , windowCoordinate ,
s o u r c e C o o r d i n a t e)

%WINSCALE_GETDELTA
% windowLenght − winW or winH
% windowCoordina te − winX or winY
% s o u r c e C o o r d i n a t e − cX or cY
%

i f (((1−windowLenght) / 2) <(windowCoordina te−s o u r c e C o o r d i n a t e) && (1 − (1−
windowLenght) / 2) >(windowCoordina te−s o u r c e C o o r d i n a t e))
%d i s p (’ DELVIS OVERLAPP ’) ;
d e l t a = (0 . 5 −(windowCoordina te−s o u r c e C o o r d i n a t e)) +windowLenght / 2 ;

e l s e
i f ((1 − (1−windowLenght) / 2) <(windowCoordina te−s o u r c e C o o r d i n a t e))

%d i s p (’ INGEN OVERLAPP ’) ;
d e l t a = 0 ;

e l s e
%d i s p (’FULL OVERLAP ’) ;
d e l t a = windowLenght ;

end
end

end

B.5. winscale_4pix.m

f u n c t i o n p i x e l = w i n s c a l e _ 4 p i x (pix , cX , cY , winW , winH , sourW , sourH , SF , winX
, winY , s c a l e t y p e)

%WINSCALE_4PIX
% 4PIX − a 2 x2 p i x e l f rame from o r i g i n a l image
% WINW − window i n c r e m e n t a l h o r i z o n t a l ([W] i d t h) v a l u e

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

B.5. winscale_4pix.m 67

% WINH − window i n c r e m e n t a l v e r t i c a l ([H] e i g h t) v a l u e
% SOURW − s o u r c e i n c r e m e n t a l h o r i z o n t a l ([W] i d t h) v a l u e
% SOURH − s o u r c e i n c r e m e n t a l v e r t i c a l ([H] e i g h t) v a l u e
% SF − s c a l i n g f a c t o r
% WINX − f i l t e r c e n t e r x−c o o r d i n a t e
% WINY − f i l t e r c e n t e r y−c o o r d i n a t e
% CX − C0 x−c o o r d i n a t e
% CY − C0 y−c o o r d i n a t e
% SCALETYPE − ’ u p s c a l i n g ’ or ’ downsca l ing ’

%−−
% COEFFICIENT AND AREA CALCULATIONS
%
% dL = winX − winLX
% dR = 0 . 0
% dT = winY − winTY
% dB = 0 . 0
%
% A0 = dL ∗ dT
% A1 = dL ∗ (winH − dT)
% A2 = dT ∗ (winw − dL)
% A3 = (winH − dT) ∗ (winW − dL)
%
% W0 = A0 ∗ SF
% W1 = A1 ∗ SF
% W2 = A2 ∗ SF
% W3 = 1 . 0 − W0 − W1 − W2

C0 = p i x (1 , 1) ;
C1 = p i x (2 , 1) ;
C2 = p i x (1 , 2) ;
C3 = p i x (2 , 2) ;

C0BX = cX − sourW / 2 ;
C0BY = cY − sourH / 2 ;
C3BX = C0BX + sourW ;
C3BY = C0BY + sourH ;
PBX = winX − winW / 2 ;
PBY = winY − winH / 2 ;

% C a l c u l a t e d e l t a o v e r l a p p i n g d i s t a n c e s

i f strcmp (’ u p s c a l i n g ’ , s c a l e t y p e)

dL = w i n s c a l e _ g e t D e l t a (winW , winX , cX) ;
dT = w i n s c a l e _ g e t D e l t a (winH , winY , cY) ;

e l s e

dL = (C0BX + sourW) − PBX;
dT = (C0BY + sourH) − PBY;

end

A0 = dL ∗ dT ;
A1 = dL ∗ (winH − dT) ;
A2 = dT ∗ (winW − dL) ;
A3 = (winH − dT) ∗ (winW − dL) ;

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

68 B. Matlab source code

W0 = A0 ∗ SF ;
W1 = A1 ∗ SF ;
W2 = A2 ∗ SF ;
W3 = 1 . 0 − W0 − W1 − W2;

p i x e l = (W0 ∗ C0) + (W1 ∗ C1) + (W2 ∗ C2) + (W3 ∗ C3) ;

end

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

References 69

References

[alt] http://www.altera.com/products/ip/dsp/image_video_processing/m-alt-vipsuite.html.

[Alt11] Altera. http://www.altera.com/literature/ug/ug_vip.pdf, May 2011.

[Ben10] BenVista. http://www.benvista.com/photozoompro, 2010.

[Ber03] Gheroghe Berbecel. Digital Image Display - Algorithms and Implementation. Whiley,
2003.

[Bys08] Vebjørn Bystrøm. Low power/high performance dynamic reconfigurable filter-design.
2008.

[Cam10] Cambridge. http://www.cambridgeincolour.com/tutorials/image-interpolation.htm,
2010.

[CcL07] Wen-kai Tsai Ming-hwa Sheu Huann-keng Chiang Chung-chi Lin, Zeng-chuan Wu.
The VLSI Design of Winscale for Digital Image Scaling. 2007.

[CHK03] Jin-Aeon Lee Lee-Sup Kim Chun-Ho Kim, Si-Mun Seong. Winscale: An Image-
Scaling Algorithm Using an Area Pixel Model. 2003.

[Cis11] Cisco. http://www.cisco.no, 05 2011.

[MB10] Mark J. Burge Manson Burger. Principles of Digital Image Processing: Core Algo-
ritms. Springer, 2010.

[oS10] onOne Software. http://www.ononesoftware.com/products/perfect-resize/, 2010.

[PYC09] Chi-Pin Lu Pei-Yin Chen, Chih-Yuan Lien. VLSI Implementation of an Edge-
Oriented Image Scaling Processor. 2009.

[Qim10] Qimage. http://www.ddisoftware.com/qimage/, 2010.

[RDH] Peter M. Athanas Rhett D. Hudson, David I. Lehn. A run-time reconfigurable engine
for image interpolation.

[Wik11] Wikipedia. http://en.wikipedia.org/wiki/lenna, May 2011.

[zip09] Estimating polyphase filter coefficients with at windowed-sinc function. ZIPcores,
2009.

Efficient video scaling algorithms implemented and optimized for FPGA - Master Thesis - Svein Erik Lindø

	Introduction
	Video scaling in videoconferencing
	FPGA vs ASIC implementation
	Relationship between Pre-Project Report and Master Thesis
	Report Outline

	Basics of video scaling
	Scaling as an geometric operation
	Pixel Models

	Interpolation
	Sampling Theorem
	Ideal Interpolation
	Nearest-neighbor Interpolation
	Linear Interpolation
	Cubic Interpolation
	Spline Interpolation
	Lanczos Interpolation

	Video Quality and Scaling Artifacts
	FIR-filter Image Scaling
	Integer Upscaling Factors
	Rational Up- and Downscaling Factors
	Linear Interpolation as FIR filter
	Higher order interpolation in FIR filter implementation

	Cisco Reference Scaler
	Winscale
	Algorithm
	Implementation Statistics
	Hardware Architecture
	Winscale Summary

	Egde-Oriented Image Scaling Processor
	Algorithm
	Approximation - Appr[]
	Edge-Catching

	Hardware Architecture
	Simulation and implementation

	Evaluating Winscale and Edgeprocessor
	My Matlab Model Comparisons

	Video Scaling IP Cores
	Dynamically Reconfigurable FPGA
	Conclusion and future work
	Matlab source code
	windowgeneration.m
	coefficients.m
	winscale_top.m
	winscale_getDelta.m
	winscale_4pix.m

	References

